

Southwest Power Conference SCR Catalyst Management September 13, 2012

Terry McTernan, P.E 919 620-3023 McTernanHT@cormetech.com

CORMETECH, INC.

CORMETECH Confidential - This document and attachments, if any, contain confidential information and is submitted without consideration other than recipient's agreement that it shall not be reproduced, lent, or disposed of directly or indirectly nor used for any purpose other than that for which it is specifically furnished.

SCR Leadership

- Industry
 - Experience: Over 1200 installations worldwide
 - Leadership: Largest installation base and capacity
 - Performance: Technological leader

• Natural Gas & Process Systems

- NO_x Efficiency: > 95% Removal
- Experience: > 750 installations worldwide
- NH₃ Emissions: < 2 ppm and Zero-Slip[™]
- Product Families: Operating temp's from Tail-end to 1,100°F

• Solid Fuel Systems

- NO_x Efficiency: > 95% Removal
- Experience: > 175 installations worldwide
- Largest experience in PRB Coals, First commercial mercury oxidation
- SO_2 oxidation: guarantees of < 0.2%

Performance Lifecycle Guarantees

- Installation Services
- Field Testing
- SCR Start-up Services

Static Mixers

- Catalyst Lifecycle Management
- Laboratory Performance Testing & Diagnostic Services
- Restoration, Repair and Regeneration Services
- COMET[™] Cormetech Oxidized Mercury Emission Technology

SCR Catalyst Management

Catalyst Design & Engineering

Just-in-time Delivery Management

- AIG/Mixers, Flue Gas Flow Devices,

SCR System Design & Service

Custom Module Systems

Flow Modeling Service

Overview

- SCR Catalyst Process
- NOx Reduction System Design
- SCR System Management Plan
 - Performance Tracking
 - Preventative Maintenance
 - Replacement

SCR Catalyst –NOx Control

Nitrogen Oxides

- NOx emissions are created during the combustion of fossil fuels.
- Environmental Protection Agency began to regulate NOx emissions in the early 1990's via the Clean Air Act. Site air permits limit the amount of NOx and possibly, ammonia which can be discharged into the air.
- The SCR system is designed to lower the outlet NOx concentrations to meet the air permit criteria.

Catalytically active components

 $-V_2O_5, WO_3$

- Types include:
 - Homogeneous honeycomb- all catalyst
 - Coated substrates plate/fiberglass
- Design temperatures: 350 1000°F

Product Selection: Formulation

Product Selection Based on Application

Coal Formulations

Coal

Gas Formulations

and Operating Temperature Ranges

What drives the temperature limits?

Low temperature

- Coal: ABS formation
- Gas: ABS formation and catalyst activity

High temperature

- Coal: SO₂ Oxidation
- Gas: thermal degradation, NH₃ oxidation, and catalyst activity (different formulations for different maximum operating temperatures)

These are **<u>guidelines</u>** only. Product selection may be impacted by the operating scenario, design approach, and time at a given temperature.

Flue Gas Temperature, °F

700 800 900 1,0001,100

Standard

500

600

300

400

SCR Catalyst Modules-Gas

SCR Catalyst Modules-Coal

CORMETECH CONFIDENTIAL

SCR Catalyst – Design

- SCR catalyst design is very site specific
- Key parameters:
 - Flow
 - Duct configuration
 - Pressure drop
 - Temperature
 - Inlet NOx
 - Life

- Operating Characteristics:
 - -Maldistribution Criteria
 - » Flue Gas Flow
 - » Temperature
 - » NH₃:NOx molar ratio

- Sources of Maldistribution
 - Flow
 - Turbine
 - Duct configuration
 - Poor modeling
 - Damaged or missing seals
 - NOx
 - Turbine
 - Duct Burners
 - Transient loads

- Sources of Maldistribution
 - Ammonia
 - Lance design
 - Structure
 - Edge effects
 - Thermal
 - Balancing
 - Fouling
 - Flow

- Performance Guarantees
 - NOx Outlet, ppmvdc
 - NH3 Slip, ppmvdc
 - Pressure Drop across catalyst
 - Design Life, hours

SCR System Design -HRSG Example

Product: Fuel: Flow Rate: Temperature: Inlet NOx:	Honeycomb CM 2.1 Natural Gas / Oil 4,000,000 lbs/hr 650° F 45 ppm	
Distribution:	Velocity - 109 Temperature NH3/NOx - 1	% RMS +/- 20 F 15%RMS
Field Performance:	Outlet NOx NH3 slip Pressure Dro Warranty	- 2 ppm – NG - 8 ppm No. 2 Oil - 5 ppm p - 1.9 " wg - Five years

HRSG Units

2 Units - (360 MW) Gas Turbines (Frame 7FA) NOx: $45 \rightarrow 2.0 \text{ ppmvd}$ NH₃ Slip: 5.0 ppmvd Guaranteed Operating Time: 35,000 hrs (5 years)

CORMETECH CONFIDENTIAL

SCR Design – Simple Cycle Example

Product: Fuel: Flow Rate: Temperature: Inlet NOx:	Honeycomb Cl Natural Gas 1,000,000 lbs/ł 845° F 25 ppmvdc	M MHT 2.1 hr
Distribution:	Velocity - 159 Temperature NH3/NOx -	% RMS +/- 30 F 10%RMS
Field Performance:	Outlet NOx NH3 slip Pressure Dro Warranty	- 2.5 ppm – NG - 5 ppm p – 3.5 " wg - 12,000 hrs /five years

Simple Cycle Units

4 Units - (45 MW) Gas Turbines (LM6000) NOx: $30 \rightarrow 2.5 \text{ ppmvd}$ NH₃ Slip: 5.0 ppmvd Guaranteed Operating Time: 10,000 hrs (5 years)

CORMETECH CONFIDENTIAL

- Performance Baseline
 - -Site Data
 - Reporting Data CEMS
 - Ammonia Flow
 - Pressure Drop
 - Annual RATA

SCR System Performance

Time

- Performance Baseline- Operating System
 - SCR Catalyst
 - Testing
 - Deactivation
 - Inspection
 - Ammonia Injection
 - Distribution Devices

Catalyst Testing

- Catalyst Performance Evaluation and Reporting:
 - Assessment of Field Operating Data
 - Diagnostic Laboratory Testing determines remaining catalyst potential in controlled environment
 - Prediction of Remaining Life analysis of trends in laboratory test results and field operating data over time is compared to engineering models and data from similar units to make prediction

Growth and Resources

Laboratory & Services

- Laboratory and Resource Improvements
 - Renovated laboratory and added equipment
 - CCSEM
 - TGA
 - Single and multi-channel micro
 - Pilot reactors
 - Bench reactors
 - BET Surface area analysis
 - Hg Porosimetry Analysis
- Comsol® Multiphysics and Modeling Simulation Software
- Continued collaboration with MHI, universities, slipstreams, etc. to advance knowledge in areas such as Hg oxidation, biomass co-firing, etc.

Catalyst Activity Testing

Predict Working Life Evaluate Field Performance Evaluate Additional Capability

- SCR Catalyst Testing
 - -Evaluate under operating conditions
 - -Sample frequently
 - -Reporting require clarity
 - -As Part of Root cause analysis

SCR Catalyst Testing Example

Deactivation Mechanisms

- Liquid Contact
- Thermal Excursions
- Poisons

- SCR Module Inspection
 - -Sealing
 - Within SCR module catalyst elements
 - SCR module to reactor frame
 - SCR reactor frame to duct wall housing ("skin")
 - -Cleanliness
 - Fouling of catalyst inlet

• With frame sealing loss

• Cracked duct seal

Repaired top seal

Insulation buildup – inlet to catalyst

CORMETECH CONFIDENTIAL

- Ammonia Injection System
 - -Distribution
 - -Minimum Temperature
 - -Capacity

- Ammonia Injection Grid (AIG)
 - The ammonia injection system delivers ammonia gas across the inlet flue gas stream.
 - The ammonia must *mix thoroughly with the flue gas to enable the NOx reduction.*
 - Ammonia maldistribution may result in
 - Excessive ammonia conc. (high ammonia slip) or
 - Starved areas (high NOx outlet) in localized areas
 - Usually some combination of the above

AIG Distribution- External

AIG Distribution- Internal

Vertical - HRSG Horizontal – Simple Cycle

CORMETECH CONFIDENTIAL

Demand aqueous ammonia quality!

– Technical grade

- Deionized water
- Chemical analysis certification

Fouled Ammonia Vaporizer Pall Ring

Ammonia System Maintenance

Inspection points:

- Lances
- Vaporizers
- Piping network
- Air blowers

AIG performance...do you need to perform ammonia injection tuning?

- Are you meeting performance?
- Save money on ammonia?
 - Tuning cost are high
 - Site specific i.e. permanent grid, test ports, etc.
- Economizer tubes salting up?

NH3-NOx Modeling

AIG Modification

Before

- 1) Increased pipe/nozzle density
- 2) Minimized header bypass
- 3) Confirmed applicability of perforated plate influence

After

Optimized NH3-NOx Mixing

Southwest Power Conference Sept 13, 2012

SCR Catalyst Replacement

Budgeting

Post performance warranty period

Planning

- Catalyst testing reveals loss of performance
- High ammonia flow: indicator of concerns, investigate
- Changing operational conditions

Timing

• Twelve to eighteen months

SCR Catalyst Replacement

CORMETECH CONFIDENTIAL

SCR Catalyst Replacement

Spent Catalyst Options

- Regeneration
- Disposal

Regeneration – Coal Experience

Regeneration vs. Alternative Actions

- Applicability Considerations
- Regeneration Processes are Designed for Coal-Oil Fired Catalysts
 - Deactivation caused by Fouling, Ash Build-up, Arsenic, Phosphorous, Calcium Sulfates
 - Clean with aqueous based solution in acid/base
 - Re-apply catalyst metals in a low concentration bath
 - Balance trade-off of NO_x and SO₃
 - Catalyst Deactivation of 30-60% vs New before Processing
 - Regeneration of a single layer of 3 or 4 reduces measured impact of a given action
 - Catalyst modules are standardized, easing logistics

Regeneration vs. Alternative Actions

- Applicability Considerations
- Challenges of Regenerating Gas-Fired Catalysts
 - Deactivation predominately caused by Loss in Reactive Surface Area from thermal fatigue or catalyst material loss (coated materials).
 - Formulation balance is notably different and may not benefit from vanadium addition
 - Deactivation of 10-20% vs New before Processing
 - Consistency and stability required
 - Most gas-fired systems operate with a single layer, therefore the reliability and long-term behavior stability is more critical.
 - Modules are customized for each facility therefore the process tanks and equipment may not be as efficient, a case by case consideration

Catalyst Disposal

- TCLP analysis to determine waste characteristics:
 - <u>Hazardous</u> or <u>Non-hazardous</u>
- Disposal Landfill Option
- Recycle Opportunity TBD?
 - (Economics of Recovery)
- Landfill Cost < Recycle

- Track Ongoing SCR Catalyst Performance
- Establish SCR System Preventative Maintenance Program including Routine Testing
- Replace Gas Catalyst only as required per above. Typical time is five- seven days per unit.
- Gas Catalyst Regeneration Unproven; requires trial and evaluation of suitability (qualification testing)

SCR catalyst management of gas fired vs. coal fired units is substantially different.

Today's presentation has focused on issues concerning gas fired units.

I am available to discuss coal fired SCR catalyst management- please contact me.

Questions ???

