

The SCR Toolbox for Mercury Emission Management

Christopher Bertole

Cormetech, Inc.

2015 Reinhold NOx-Combustion Round Table

Agenda

Background

- The SCR's role in Hg control
- Quantifying and testing SCR catalyst potential
- Review the factors that affect the SCR catalyst potential for Hg oxidation
 - Flue gas conditions
 - Hg⁰, Hg²⁺, O₂, H₂O, NO, Molar Ratio, Temperature, CO, SO₂
 - Halogens
 - HCI, HBr, HI
 - Catalyst
 - Traditional
 - Advanced

Reduce NOx

 $4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$ $2NO + 2NO_2 + 4NH_3 \rightarrow 4N_2 + 6H_2O$

□ Minimize undesirable side reaction

 $2SO_2 + O_2 \rightarrow 2SO_3$

Oxidize elemental Hg

 $2\text{Hg} + 4\text{HCI} + \text{O}_2 \rightarrow 2\text{HgCI}_2 + 2\text{H}_2\text{O}$

SCR Hg Mass Balance

• At the SCR inlet, Hg is present in three forms:

$$Hg_{in}^{total} = Hg_{in}^{0} + Hg_{in}^{2+} + Hg_{in}^{particulate}$$

Particulate Hg is not affected by the SCR

• Hg mass balance across SCR (at steady state):

 $Hg_{in}^{0} + Hg_{in}^{2+} = Hg_{out}^{0} + Hg_{out}^{2+} \quad 2Hg + 4HCI + O_{2} \rightarrow 2HgCI_{2} + 2H_{2}O$

Quantify Hg oxidation by the SCR:

$$\eta_{\rm HgOx} = \frac{{\rm Hg}_{\rm in}^0 - {\rm Hg}_{\rm out}^0}{{\rm Hg}_{\rm in}^0} \qquad \% \text{ Oxidized} = \frac{{\rm Hg}_{\rm out}^{2+}}{{\rm Hg}_{\rm out}^0 + {\rm Hg}_{\rm out}^{2+}}$$

The SCR's Role in Hg Removal Oxidize Hg for Downstream Capture!

2015 Reinhold NOx-Combustion Round Table Richmond, Virginia

SCR Catalyst Potential

$$\frac{K}{AV} = Catalyst Potential$$

$$AV = \frac{Gas Flow}{Total GSA}$$

 $\frac{K}{AV} = Catalyst Potential for X\% DeNOx$

$\frac{K_{HgOx}}{AV} = Catalyst Potential for Y\% Hg Oxidation$

$\frac{K_{SO2Ox}}{AV} = Catalyst Potential for Z\% SO_2 Oxidation$

SCR Catalyst Potential

$$\frac{K}{AV} = -\ln(1 - \eta_{NOx})$$

Activity, K, depends on:

- Catalyst composition and age
- Flue gas conditions
 - Temperature
 - MR (NH₃), O₂, H₂O, SO₂, SO₃

$$\frac{K_{HgOx}}{AV} = -ln(1 - \eta_{HgOx})$$

*K*_{HgOx} is strongly condition dependent, but it's still a useful parameter!

Activity, K_{HgOx}, depends on:

- Catalyst composition and age
- Flue gas conditions
 - Temperature

$$- \mathsf{MR} (\mathsf{NH}_3), \mathsf{O}_2, \mathsf{H}_2\mathsf{O}, \mathsf{SO}_2, \mathsf{SO}_3$$

- +HCI, HBr, HI, CO, HC

$$\frac{K_{SO2Ox}}{AV} = -ln(1 - \eta_{SO2Ox})$$

Activity, K_{SO2Ox}, depends on:

- Catalyst composition, ρ_{bulk} and age
- Flue gas conditions
 - Temperature
 - MR (NH₃), SO₂, SO₃

Measuring SCR Hg Oxidation

Measure Hg⁰ and Hg²⁺

- CEMS
- Sorbent traps

Lab-scale catalytic reactors

- Micro reactor
- Bench reactor

• Field (full scale reactor)

- SCR inlet and outlet measurements
 - Particulate challenge (high dust difficult to measure)
- Stack measurements
 - Final system performance
 - SCR contribution combined

Lab Reactors

- Each reactor type can be used to generate quality data.
- Each reactor type has it's own advantages and limitations.
- Micro is well-suited for parametric studies
 - Automation can help rapidly test a large set of conditions
- Bench is well-suited for field audit testing

– Full size element

- Catalyst poisons not evenly distributed throughout log.
- Micro may require multiple samples to fully characterize log.

- Multi-layer system test

- System and individual layer performance in a single test
- Micro may need multiple step-wise tests using results of upper layers to set conditions for lower layers.
- Aging times are similar to micro scale

Micro Reactor

• Example shown is fully-automated for efficient data collection.

Micro Reactor: Aging Times

Fresh Catalyst

Transients are typically short. Steady state for this test is achieved is < 1 hour.

357°C, 5.4% O₂, 9.7% H₂O, 46 ppm HCl, 1450 ppm SO₂, 15 ppm SO₃, 0 or 100 ppm CO, 275 ppm NO, MR = 0

Micro Reactor: Aging Times Fresh Catalyst

Transients can be longer when HCI is < 10 ppm. Steady state for this series is achieved in < 5 hours.

400°C, 3.3% O₂, 11% H₂O, 3 or 9 ppm HCl, 490 ppm SO₂, 5 ppm SO₃, 50 ppm CO, 375 ppm NO, MR = 0 or 0.25

Bench Reactor

- Bench scale allows full-size element testing (single or multi-layer).
- Test fresh or deactivated catalyst.
- Inject HCI/HBr, O₂, H₂O, SO₂, SO₃, NOx, CO, HC.
- Full H₂O concentration control

Bench Reactor Data New Catalyst

371°C, 4.3% O₂, 8.5% H₂O, 58 ppm HCI, 850 ppm SO₂, 9 ppm SO₃, 100 ppm CO, 300 ppm NO, 11 ppm NH₃

Main Presentation Focus...

Factor	Hg Oxidation Correlation with Increasing Factor Value	Note
HCI		Strong interdependence with T and concentration
HBr		Strong interdependence with T and concentration
н	1	Strong interdependence with T and concentration
O ₂	1	
Catalyst surface area	1	Determined by layer length and Ap/pitch selection
Catalyst V ₂ O ₅		
Advanced catalysts		Improve Hg ox at constant DeNOx and SO_2 ox
Hg⁰	0	No impact: kinetics are first order in Hg ⁰

Factor	Hg Oxidation Correlation with Increasing Factor Value	Note
Hg ²⁺	0	Impact depends on re-reduction activity
Temperature		Strong interdependence with HCl, HBr, NH_3 , catalyst
NH ₃		Strong interdependence with T, HCI, HBr, catalyst
NO		Impact is cross-correlated through NH_3
H ₂ O		
SO ₂		
SO ₃		
СО		Strong interdependence with T, HCI, HBr, catalyst
Hydrocarbons		
Catalyst Age		Strong interdependence with catalyst type

Impact of O₂ and H₂O Hg Oxidation Activity

 O_2 and H_2O both have a significant impact on Hg oxidation activity. In comparison, these parameters have a much smaller impact on DeNOx or SO₂ oxidation rates.

400°C, 3.5% O₂, 350 ppm NO, 0.2 Molar Ratio, 1000 ppm SO₂, 10 ppm SO₃, 100 ppm CO, 11 ppm HCl

Impact of Hg⁰ Hg Oxidation Activity

Steady state data reveal that the Hg oxidation reaction is 1^{st} order in Hg⁰ \rightarrow Hg oxidation is constant with varied inlet Hg⁰ concentration.

Inlet NH ₃ /NOx	HCl [ppmvd]	Hg Oxidation with inlet Hg 21 µg/Nm ³	Hg Oxidation with inlet Hg 11 µg/Nm ³
0.2	11	28%	27%
0.9	11	11%	14%
0.2	56	81%	81%
0.9	56	58%	61%

400°C, 3.5% O₂, 11% H₂O, 350 ppm NO, 1000 ppm SO₂, 10 ppm SO₃, 100 ppm CO

The overall kinetic rate law, however, is more complex, and includes the kinetic effects of HCI and O_2 , and inhibition effects of H_2O , NH_3 , CO and SO_2 .

Why are Halogens Needed?

(No halogens included).

Why are Halogens Needed?

(With Cl included).

 $2Hg^{0} + 4HCI + O_{2} \rightarrow 2Hg^{2+}CI_{2} + 2H_{2}O$

Impact of HCI Hg Oxidation Activity

The kinetic data are consistent with a mechanism where HCl adsorbs on the catalyst. NH_3 can significantly inhibit Hg oxidation activity.

400°C, 3.5% O_2 , 11% H_2O , 350 ppm NO, 1000 ppm S O_2 , 10 ppm S O_3 , 100 ppm CO; MR = Inlet Molar Ratio

2015 Reinhold NOx-Combustion Round Table Richmond, Virginia

Impact of NH₃ and NOx Hg Oxidation Activity

 NH_3 can significantly inhibit Hg oxidation activity. Negative impact of higher inlet NOx is caused by higher inlet NH_3 (we tested at fixed molar ratio values).

400°C, 3.5% O₂, 11% H₂O, 350 ppm NO, 1000 ppm SO₂, 10 ppm SO₃, 100 ppm CO

Impact of HCI on NH₃ Inhibition Hg Oxidation Activity

There is a strong Interdependence between the HCI concentration and the degree of NH₃ suppression of the Hg oxidation rate.

400°C, 3.5% O_2 , 11% H_2O , 350 ppm NO, 1000 ppm S O_2 , 10 ppm S O_3 , 100 ppm CO; MR = Inlet Molar Ratio

2015 Reinhold NOx-Combustion Round Table Richmond, Virginia

Impact of HCI on NH₃ Inhibition First Layer vs. Lower Layer Performance

Strong interdependence between the HCl content and the degree of NH_3 suppression of the Hg oxidation rate \rightarrow one implication is that layer 1 catalyst can contribute more to overall Hg oxidation under higher HCl conditions!

Single Layer Performance Example					
			HCI	Layer	Hg Ox Delta
Position	Case	MR	[ppm]	Hg Ox	Layer 1 vs. Lower Layer
Layer 1	Low HCI	0.9	28	36%	-27%
Lower Layer	Low HCI	0.2	28	63%	
Layer 1	High HCl	0.9	113	79%	-11%
Lower Layer	High HCl	0.2	113	90%	

400°C, 3.5% O_2 , 11% H_2O , 350 ppm NO, 1000 ppm S O_2 , 10 ppm S O_3 , 100 ppm CO; MR = Inlet Molar Ratio

Impact of Temperature (MR=0.2) Hg Oxidation Activity

CORMETECH

Listed activation energy values are for the overall Hg oxidation reaction. Values are negative because the rate decreases as temperature increases.

 $3.5\% O_2$, $11\% H_2O$, 350 ppm NO, $1000 ppm SO_2$, $10 ppm SO_3$, 100 ppm CO; MR = Inlet Molar Ratio

2015 Reinhold NOx-Combustion Round Table

Impact of Temperature (MR=0.9) Hg Oxidation Activity

With high inlet NH₃, the activation energy decreases for constant HCl, which indicates that NH₃ inhibition can become more pronounced at high temperature.

 $3.5\% O_2$, $11\% H_2O$, 350 ppm NO, $1000 ppm SO_2$, $10 ppm SO_3$, 100 ppm CO; MR = Inlet Molar Ratio

2015 Reinhold NOx-Combustion Round Table

Richmond, Virginia

CORMETECH

Impact of Temperature Hg Oxidation Activity

Increasing HCI can reduce the amount of NH₃ suppression across the temperature range.

 $3.5\% O_2$, $11\% H_2O$, 350 ppm NO, $1000 ppm SO_2$, $10 ppm SO_3$, 100 ppm CO; MR = Inlet Molar Ratio

2015 Reinhold NOx-Combustion Round Table Richmond, Virginia

Reaction Mechanism Several Hypotheses in the Literature

One example: Eley – Rideal (HCI adsorbs, Hg reacts from gas phase)

Two other examples (both include Hg adsorption steps): Langmuir – Hinshelwood (both HCI and Hg adsorb before reaction occurs)

Mars – van Krevelen (reaction of adsorbed Hg with lattice chloride)

$$2NH_3 + 3HgCl_2 \rightarrow 3Hg + 6HCl + N_2$$

What will happen on a more detailed level (simplified):

 $2NH_{3} + 3V^{5+}O \rightarrow N_{2} + 3H_{2}O + 3V^{3+}$ $3V^{3+} + 3HgCI_{2} + 3H_{2}O \rightarrow 3V^{5+}O + 3Hg + 6HCI$

Coal-type SCR has a low activity for NH₃ oxidation.

Impact of Reducing Agents Hg Oxidation Activity

In addition to NH_3 , there are additional flue gas species that can act as catalyst reducing agents and inhibit Hg oxidation by reduction of HgCl₂.

SO₂:
$$SO_2 + HgCI_2 + H_2O \rightarrow Hg + 2HCI + SO_3$$

CO:
$$CO + HgCl_2 + H_2O \rightarrow Hg + 2HCI + CO_2$$

Hydrocarbons can oxidize over SCR catalyst and partially reduce V⁵⁺ sites, but the hydrocarbon concentration in coal flue gas tends to be fairly low.

400°C, 3.5% O₂, 11% H₂O, HCI = 11 ppm or as specified, 350 ppm NO, 0.2 MR, SO₂ = 1000 ppm or as specified, SO₃ = 1% of SO₂, CO = 100 ppm or as specified

2015 Reinhold NOx-Combustion Round Table

Hg oxidation reactivity held constant. Hg²⁺ reduction activity by NH₃ set at 0 (inactive).

In the limit where Hg²⁺ reverse reactions are inactive \rightarrow Hg oxidation is independent of inlet Hg²⁺ speciation, and the outlet % oxidized Hg²⁺ is effectively additive (= inlet Hg²⁺ + amount of Hg⁰ oxidized in the SCR)

Hg oxidation reactivity held constant. Hg²⁺ reduction activity by NH_3 set at a low value.

Higher inlet Hg²⁺ decreases the effective Hg oxidation due to reverse reactions. Note that the outlet %Hg²⁺ for the 40% inlet oxidized case is higher than the 5% inlet oxidized case.

Hg oxidation reactivity held constant. Hg²⁺ reduction activity by NH₃ further increased.

Higher inlet Hg²⁺ decreases the effective Hg oxidation due to reverse reactions. Note that the outlet %Hg²⁺ for the 40% inlet oxidized case is still higher than the 5% inlet oxidized case (but the difference is becoming smaller).

Hg oxidation reactivity held constant. Hg²⁺ reduction activity by NH₃ increased again.

In the limit where reverse reactions are dominant, the %outlet Hg²⁺ achieved is independent of the %inlet Hg²⁺.

In the limit where reverse reactions are dominant, Hg oxidation of top layers can become negative for high %inlet Hg²⁺.

Halogens: Cl vs. Br vs. I Hg Oxidation Activity

Baseline with chloride only. Challenging Hg oxidation condition.

400°C, 350 ppm NO, 0.9 MR, 3.5% O₂, 12% H₂O, 1000 ppm SO₂, 11 ppm SO₃, 100 ppm CO.

Halogens: Cl vs. Br vs. I Hg Oxidation Activity

Bromide is much more effective than chloride for Hg oxidation.

400°C, 350 ppm NO, 0.9 MR, 3.5% O₂, 12% H₂O, 1000 ppm SO₂, 11 ppm SO₃, 100 ppm CO.

Halogens: Cl vs. Br vs. I Hg Oxidation Activity

Rank of halogen effectiveness for Hg oxidation: Br > I > Cl.

400°C, 350 ppm NO, 0.9 MR, 3.5% O₂, 12% H₂O, 1000 ppm SO₂, 11 ppm SO₃, 100 ppm CO.

HBr Impact on NH₃ Inhibition

400°C, 3.5% O₂, 11% H₂O, 1000 ppm SO₂, 10 ppm SO₃, 100 ppm CO, HCI = 5 ppm; MR = Inlet Molar Ratio

HBr Impact on NH₃ Inhibition

The catalyst's Hg oxidation activity is much less sensitive to NH_3 at high HBr concentration (almost no inhibition at 2 ppm HBr).

400°C, 3.5% O₂, 11% H₂O, 1000 ppm SO₂, 10 ppm SO₃, 100 ppm CO, HCI = 5 ppm; MR = Inlet Molar Ratio

Impact of HBr on NH₃ **Inhibition** First Layer vs. Lower Layer Performance

Strong interdependence between the HBr content and the degree of NH_3 suppression of Hg ox rate \rightarrow as with higher HCl, the layer 1 catalyst will contribute more to overall Hg oxidation with HBr injection!

Single Layer Performance Example						
			HCI	HBr	Layer	Hg Ox Delta
Position	Case	MR	[ppm]	[ppm]	Hg Ox	Layer 1 vs. Lower Layer
Layer 1	no HBr	0.9	6	0	5%	-6%
Lower Layer	no HBr	0.2	6	0	12%	
Layer 1	HBr = 1	0.9	6	1	87%	-4%
Lower Layer	HBr = 1	0.2	6	1	91%	
Layer 1	HBr = 2	0.9	6	2	92%	-1%
Lower Layer	HBr = 2	0.2	6	2	93%	

400°C, 3.5% O₂, 11% H₂O, 1000 ppm SO₂, 10 ppm SO₃, 100 ppm CO, HCI = 5 ppm; MR = Inlet Molar Ratio

Catalyst Management

- Including Hg is analogous to DeNOx...
 - With the caveats for K_{HgOx} previously outlined
- DeNOx or Hg oxidation establishes the design minimum volume
 - Depends on the relative catalyst potential and performance requirements for each reaction

Considerations

- Layer auditing (lab reactor testing)
- Catalyst action selection (traditional, regen, advanced)
- Halogen augmentation potential

Catalyst Deactivation

Correlation with DeNOx Deactivation

2015 Reinhold NOx-Combustion Round Table

Catalyst Deactivation PRB-Firing Unit Example (Ca, P)

Catalyst Deactivation Bituminous-Firing Unit Example (As)

Impact of Catalyst V₂O₅ Content

Higher V_2O_5 improves Hg oxidation and DeNOx, but it must be balanced relative to SO₂ oxidation constraints (e.g., PRB vs. bituminous, SO₃ mitigation).

400°C, 3.5% O_2 , 11% H_2O , 1000 ppm SO_2 , 10 ppm SO_3 , 100 ppm CO, HCI = 11 ppm; MR = 0

2015 Reinhold NOx-Combustion Round Table Richmond, Virginia

SCR Catalyst: Design Approach

SCR catalyst is formulated to achieve DeNOx and Hg oxidation requirements, while meeting SO_2 oxidation constraints. Either DeNOx or Hg oxidation will be controlling for catalyst volume; the other will have excess potential.

Advanced Catalyst

- For challenging conditions, such as...
 - Lower HCI, and/or
 - Higher temperature, and/or
 - Higher concentration of reducing agents (NH₃, CO, SO₂)
- ...we can modify catalyst formulation and processing to improve Hg oxidation relative to DeNOx and SO₂ oxidation

Advanced Catalyst: Low HCI

370°C, 250 ppm NO, 0.9 MR, 4% O₂, 14% H₂O, 400 ppm SO₂, 4 ppm SO₃, 100 ppm CO

2015 Reinhold NOx-Combustion Round Table Richmond, Virginia

CORMETECH

Advanced Catalyst: NH₃ Impact

Advanced Catalyst also has a performance benefit in the First Layer position for higher HCI cases.

Single Layer P					
Position	Case	MR	HCl [ppm]	Layer Hg Ox	Hg Ox Delta Advanced vs. Traditional
Layer 1	Traditional Catalyst	1.0	58	53%	
Layer 1	Advanced Catalyst	1.0	58	72%	18%

371°C, 305 ppm NO, 1.0 MR, 4.3% O₂, 8.5% H₂O, 850 ppm SO₂, 8 ppm SO₃, 100 ppm CO.

Advanced Catalyst: K/Ko

400°C, 350 ppm NO, 0.9 MR, 3.5% O₂, 12% H₂O, 1000 ppm SO₂, 10 ppm SO₃, 100 ppm CO, 56 ppm HCI

Summary

• SCR Hg oxidation is influenced by multiple factors

- Layer dependency
- More factors in setting design conditions
- Interdependencies between factors
- Impacts of catalyst type & formulation

Understand these factors and incorporate them into the design process to optimize the SCR for Hg oxidation, maintain NOx reduction and manage SO₂ oxidation.

Christopher Bertole

Cormetech, Inc.

2015 Reinhold NOx-Combustion Round Table