

2006 AWMA Mega Symposium

SCR Catalyst Management Enhancing Operational Flexibility

Cormetech, Inc. Scot Pritchard Chris DiFrancesco

2006 MegaSymposium

- Background on Catalyst Management
- Catalyst Management Planning
 - Traditional Management Considerations
 - Additional Considerations
- Summary

- Background on Catalyst Management
- Catalyst Management Planning
 - Traditional Management Considerations
 - Additional Considerations
- Summary

- Background on Catalyst Management
- Catalyst Management Planning
 - Traditional Management Considerations
 - Additional Considerations
- Summary

Performance Requirements & History

- Performance Requirements
 - Catalyst performance vs. expectations
 - Fuels monitoring current vs. future

Performance Requirements & History

- Catalyst testing & sampling methodology
 - Full elements / plates from each layer
 - Molar ratio 1 vs. design MR
 - SO₂ conversion
 - Appropriate aging of samples
 - Qualification of regeneration process

- AIG Tuning/Distribution Measurement
 - Potential for AIG and mixing optimization

Performance Requirements & History

- Catalyst and system inspections
 - LPA mitigation considerations
 - Screen, perforated plate, or aerodynamic design
- Catalyst type and pitch selection
 - Experience
 - Qualification process

New vs. Regeneration

- Case Specific
 - Catalyst type
 - Honeycomb and plate have regeneration history
 - \$ per K*SA must be compared
 - Consideration of product advancements
 - Life extension vs. outage cost
 - Regen=more frequent vs. New=less frequent
 - Capabilities vs. Guarantees and Integration
 - Ko, K/Ko, SO₂ conversion, Hg oxidation
 - Maximum NOx removal efficiency

Outage Alignment

- Catalyst Addition/Replacement timing
 - Evaluation very utility dependent
 - Seasonal vs. Year Round
 - Use of SCR Bypass with boiler in operation
 - Cost of outage
 - Flexibility on NOx reduction and NH₃ slip requirements
 - Rate based vs. tonnage based
 - Preparedness for SCR work during forced outage

Economic Impacts

- Utility Specific, e.g.
 - Capital vs. O&M
 - Outage timing and cost
 - Unit capacity factor
 - NOx credit value
 - Ammonia cost
 - SO₃ mitigation cost
 - Catalyst cost per K/AV or K*surface area
 - Near term vs. long term evaluation

- Background on Catalyst Management
- Catalyst Management Planning
 - Traditional Management Considerations
 - Additional Considerations
- Summary

Historical vs. Future

Fuels

- Catalyst performance
 predictability
 - High arsenic fuels
 - PRB
 - Petcoke
- Optimization of catalyst formulation based on fuel plan
- Fuel additives

2006 MegaSymposium

Operation Methodology

• Removal Efficiency vs. Time

- Take advantage of K/AV installed to achieve lower NOx emissions
 - Applicable to tonnage based emission limits
 - Can increase system flexibility
- Optimize
 - AIG / Mixer
- Evaluate
 - Sensitivity to NH₃ slip
 - APH
 - Ash

August 28-31, 2006

2006 MegaSymposium

Operation Methodology

Expansion of Operating Range

- Expansion of operating range and flexibility thru allowance of ABS formation on continuing cyclic basis
 - 500 MW plant with a baseline of 0.55 lb/mmbtu and 90% reduction can be worth over \$200,000 (ref. \$2000/ton NOx credit value) after 200 hours

Operation Methodology

- Liquid ABS temporarily reduces activity
 - Catalyst type and properties will influence capability
 - Evaluate performance requirement vs. total K/AV available
 - Kinetic effects
 - Catalyst age

- Operation time vs. Recovery time
- Characterization of SO₃ and NH₃ spike during recovery

Fleet Considerations

- Interchangeability
- Common spares
- Alternate product qualification
- Regeneration
- Disposal and recycling options

SO₃ Mitigation

High Performance Catalyst

- Allows reduced SO₃ emissions with excellent NOx reduction performance
- Product features conversion rates as low as < 0.1% for single layer additions
- Further advancements under development
- Product can be used in combination with in-furnace and post SCR mitigation techniques

	Product			Case 1		Case 2	
							Relative
				Relative	Relative	Relative	SO2
		Opening	GSA	Volume	Pressure	Volume	Oxidation
Product	Pitch	(mm)	(m2/m3)	Required	Drop	Required	Required
Conventional	7.4	6.3	445	100%	100%	100%	100%
High							
Performance	6.9	6.3	539	75%	61%	100%	25%

August 28-31, 2006

2006 MegaSymposium

Hg Oxidation

2006 MegaSymposium

Catalyst Life vs. Hg Oxidation Capability

- Model developed since 2003
- Predictive capability on range of fuels vs. catalyst life
- Guarantees
 available
- MHI patented approach for low CI coals

- Background on Catalyst Management
- Catalyst Management Planning
 - Traditional Management Considerations
 - Additional Considerations
- Summary

Summary

Traditional Considerations

- Catalyst Type
 - \$ per K/AV or K*SA
- Costs associated with outages
- Pressure drop associated with added layer(s)
- Sensitivity to NH₃ slip
- New catalyst vs. regeneration
- Additional Considerations
 - Operation and Performance goals (NOx removal, Tmin, etc.)
 - Future fuels
 - Fleet management
 - SO₂ oxidation limits
 - Hg oxidation
 - Catalyst & replacement methodology advancements

Use basic tools for initial evaluation butneed to keep up with current issues and future technology to optimize process 2006 MegaSymposium

Thank you!

Questions?

August 28-31, 2006

2006 MegaSymposium