Effects of SCR Catalyst and Sodium Hydrosulfide on the Speciation and Removal of Mercury within a Forced-Oxidized Limestone Scrubber

S. Behrooz Ghorishi, Scott A. Renninger and George A. Farthing <u>The Babcock & Wilcox Company</u>

> Chuck Teets and Jeanne A. Neureuter, PE Dominion Generation

Thomas W. Hastings and Chris E. DiFrancesco Cormetech Inc.

CORMETECH

Motivation and Objectives

Hg²⁺ retention and control within a Wet FGD (WFGD)

- Effective in bituminous coals; verified in this program (Mt. Storm fires a medium sulfur bituminous coal)
- PRB coals: recent analysis of literature data and modeling have shown less effectiveness (Niksa, 2004); needs to be assessed (beyond this study)

The all important liquid-phase chemistry of Hg²⁺ and its reduction reaction to Hg⁰ and re-emission of Hg⁰ from WFGD

- Does it happen in this LSFO unit?
- > Can it be prevented using B&W's technology (addition of NaHS)?

Effect of SCR on Hg speciation

- > Does it change at the inlet of the WFGD? Production of additional Hg²⁺?
- If yes, is WFGD effective in the removal of the additional Hg²⁺? Re-emission of Hg⁰? Implementation of B&W's technology needed?
- Can SCR Hg oxidation be accurately modeled?
- What are the key field measurement and design parameters for SCR oxidation of Hg⁰?

Mount Storm Site Description

- 3 Units -1662 Megawatts combined
 Tests conducted only on Unit 2 (550 Megawatts)
- Burns over 4000 tons/day of medium sulfur Eastern bituminous coal (all units)
- Air Quality Control System consisting of SCR/ESP/WFGD
- SCR Cormetech honeycomb V₂O₅ WO₃ / TiO₂ catalyst (unit 2 – two layers installed, one spare)
- ESP has a SCA of ~320 ft²/1000 acfm (unit 2)

FGD system is limestone forced-oxidation

Mt. Storm Unit 2 Schematic

1-4: Locations of Hg measurements: OHM and Hg CEM (PSA analyzer) SCR was by-passed during the initial testing (non-ozone season)

Detailed Duct/Sampling Locations

FGD Scrubber Attributes

Dominion Power – Mt. Storm Station Unit 2				
Number of FGD modules	1			
FGD inlet SO ₂ concentration, ppmdv	1400			
FGD reagent	Limestone			
Recycle slurry pH	5.60			
Recycle slurry total suspended	14 – 16			
solids, %				
Recycle slurry operating level, ft	29.1			
FGD liquid to gas ratio, gal/1000 acf	70			
FGD forced-oxidation method	In-situ – lance method			
DBA concentration, ppm	294 – 557			
Chloride concentration, ppm	35,000			
Slurry dewatering – Primary	Hydroclone			
Slurry dewatering – Secondary	Rotary drum vacuum filters			
FGD purge	None, closed system			
Gypsum use	Mine reclamation			
De-foaming agent use	Yes, sporadically			

Economizer Outlet (Duct A and Duct B)

ESP Inlet

FGD Outlet

Ontario Hydro and Hg CEM (PSA analyzers)

WFGD Reagent Feed System (B&W's technology)

Mt. Storm Coal Analysis Results

	Average*	RSD**, (%)	Minimum	Maximum
Moisture, %	7.46	24	5.20	13.09
Ash, %	14.62	11	12.21	19.10
Volatile Matter, %	16.67	10	14.87	20.86
Sulfur, %	1.82	9	1.39	2.16
Heating value, Btu/lb	12026	3	11219	12676
Carbon, %	69.51	3	64.79	72.81
Hydrogen, %	3.86	5	3.54	4.34
Nitrogen, %	1.17	11	0.89	1.28
Oxygen, %	8.97	21	6.48	14.66
Chloride, ppm	555	12	423	678
Mercury, ppm	0.20	16	0.16	0.30

* Result of 23 different catches during the test program

** RSD: Relative Standard Deviation [(standard deviation/average)*100]

SCR bypassed: Effect of B&W additive (NaHS); OHM results

Total Hg at Economizer Outlet: 22-27 μg/dscm
 No control of Hg with AH/ESP; very little Hg_P

Ash Sample Analysis from Mt. Storm

Date	LOI, %	Inorganic carbon, %	Mercury, ppm
5/21/04	6.5	0	0.15
5/24/04	9.0	0	0.25
6/02/04	6.3	0	0.17
6/09/04	8.7	0	0.24
Average	8.1	0	0.21 (very low Hg _P)

Despite rather high UBC (LOI) and high HCI in flue gas (about 35 ppm), very little Hg_P was observed; LOI not very active (in ESP contact mode) in the adsorption of Hg by this fly ash

Effect of SCR; no additive (NaHS); OHM results

Dual benefit of SCR:

1- increased net Hg⁰ oxidation (economizer out to FGD inlet) from 64% Hg⁺² to over 95% Hg⁺²

2- Prevented re-emission of Hg^o

Effect of SCR and additive (NaHS); OHM results

SCR suppressed the re-emission of Hg⁰; injection of the additive not needed

Mount Storm Project Summary

- Without SCR in service:
 - Total Hg removal across the FGD of ~70% w/o NaHS injection
 - There was some re-emission of Hg⁰ (outlet > inlet)
 - With NaHS injection, total Hg removal across FGD of ~80%
 - The additive prevented re-emission of Hg⁰
- With SCR in service:
 - SCR increased the extent of oxidation of Hg^o (in a bituminous coal) from 64% to >95% from economizer outlet to FGD inlet
 - Total Hg removal (across the FGD) averaged >90% with and without additive injection
 - With the SCR in service, there was no re-emission to control.
- <u>B&W's additive did not affect SO₂ removal efficiency of</u> <u>Wet FGD</u>

SCR Hg Oxidation Modeling

- Cormetech Proprietary Model Description
 - Simultaneous NO_x Reduction and Hg⁰ Oxidation to Hg⁺²
 - Numerical Integration of Differential Equations for Rx. Kinetics
 - Allows for DeNOx, NH₃ Inhibition, CI & Hg Thermodynamics, Catalyst Age, Coal(s) being Fired, and Field Operating Conditions
 - Regression Constants Based on Extensive Parametric Pilot Studies
- Modeling Study Components
 - Determine Average Field Measurement Values & Uncertainties
 - Pilot-Measured Catalyst DeNOx Activity (could also predict)
 - Estimate non-SCR Contribution to Observed Hg Conversion
 - Compare Field Data to Model Prediction
 - Determine Key Operating & Design Parameters (Sensitivity Analysis)

SCR Modeling – Input Parameters

- Standard Inputs From Available Field Data
 - Unit Operating Conditions, Coal Properties, Catalyst Properties
 - DeNOx Performance Inlet NO_x and NH₃ Slip (or Equivalent)
 - Flue Gas Concentrations Especially Hg, Hg⁺², H₂O and HCl
- Estimate of Non-SCR Hg⁰ Conversion
 - SCR Outlet Hg Speciation was not Measured at Mt. Storm Unit 2
 - Bias Seen in ESP Inlet Hg Data \rightarrow Rely on FGD Inlet Data
 - SCR-Bypassed Hg Data (Economizer Outlet to FGD Inlet)
 - Baseline, w/o FGD Additive: 68% Conversion
 - Baseline, with FGD Additive: 59% Conversion
 - Average: 64% non-SCR Hg Conversion (8% Pooled Uncertainty)
- Estimate of HCI Concentration at SCR
 - 33 ppmvd HCI Measurement (Corrected from FGD Inlet)
 - 41 ppmvd HCl from Combustion Calculations Utilized in Model
 - Statistically Different Perhaps due to HCI Sorption after SCR

SCR Modeling – SCR On-Line w/NH₃

- Normal Operation: 93% NOx Reduction
- Field Estimate for SCR Hg Conversion to Hg⁺²
 - Theory: ?_{NET} = 1 [(1 ?_{SCR})(1 ?_{NON-SCR})]
 - Assumption: ?_{NON-SCR} = 64% Based upon SCR-Bypassed Data (Additional Conversion After SCR of Remaining Hg⁰)
 - Field Data: ?_{NET} = 98.3% with 0.5% Std. Uncertainty
 - Field Estimate: ?_{SCR} = 95.9% with 1.7% Std. Uncertainty
- Predicted SCR Hg Conversion to Hg⁺²
 - Model Prediction: ?_{SCR} = 92.6% with 2.9% Std. Uncertainty
- Comparison of Field Estimate with Model Prediction
 - Not Statistically Different at 80% Confidence Level
 - Prediction is Consistent with Field Data

SCR Modeling – SCR On-Line, NH₃ Off

- Ontario Hydro Field Data Not Available
- Predicted Net Conversion (SCR + non-SCR)
 - SCR: Model Prediction 97.9 % Conversion
 - Non-SCR: Assume SCR-Bypassed Value (64%)
 - Net Predicted Conversion 99.3% Conversion
- Comparison to Ammonia Injection Case
 - Net Hg Conversion 98.5 % w/NH₃ vs. 99.3% w/o NH₃
 - Cannot Draw Conclusion r.e. Statistical Difference
 - But NH₃ Believed to Play Strong Role in SCR Hg Oxidation
 - Adequate SCR Catalyst Capability (volume & activity) at Mt. Storm 2 for High Hg⁰ Conversion for Either Case
 - Predicted Difference in SCR Hg⁰ Conversion: 5%

SCR Modeling – Sensitivity Analysis

- Parameter Uncertainties with Major Impact on Hg Prediction
 - SCR Inlet HCI Concentration (or its Surrogate, coal CI content)
 - SCR Inlet H₂O Concentration
 - Flue Gas Flowrate
- Estimated Parameters with Uncertainties of Major Impact
 - SCR Outlet Hg Speciation (not measured directly)
 - SCR Inlet NH₃/NO_x Molar Ratio adjusted to match field DeNOx
- Parameter Uncertainties with Minor Impact on Hg Prediction
 - SCR Temperature
 - Inlet Concentrations O₂, NO_x, Hg and Hg⁺²
- Other General Considerations
 - Availability of (as well as Design for) Spare Layer(s)
 - Lifetime Performance of SCR for DeNOx and Hg Oxidation

SCR Modeling – Catalyst Management

- Timing of Additions or Replacements Consider Both DeNO_x and Hg
- Performance Decline Rates Accurate Predictions will be Helpful

Summary – SCR Hg Oxidation Modeling

- Cormetech's SCR Hg⁰ Oxidation Model Predictions were Consistent with the Field Data
- Key Field Measurement Parameters for Accurate SCR Hg Modeling and Prediction were Identified:

NOx Conversion and NH₃/NO_x Molar Ratio

- Inlet Flue Gas Composition (Including HCI)
- Inlet and Outlet Hg⁰ and Hg⁺² Concentrations
- Flue Gas Temperature and Flowrate
- SCR Catalyst Management and Design Strategies Should Consider Both NO_x Reduction and Hg Oxidation Requirements