

SCR Catalyst Deactivation Mechanism for PRB-Firing Coal Utility Boilers

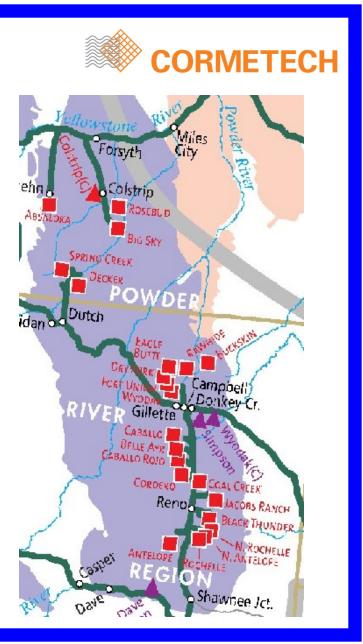
Christopher Bertole

Jeremy Freeman

Cormetech, Inc. 2012 NOx-Combustion Round Table

Presentation Outline

- SCR Design Approach for PRB Units
- Field Experiments → Mechanistic Insight
- Practical Application

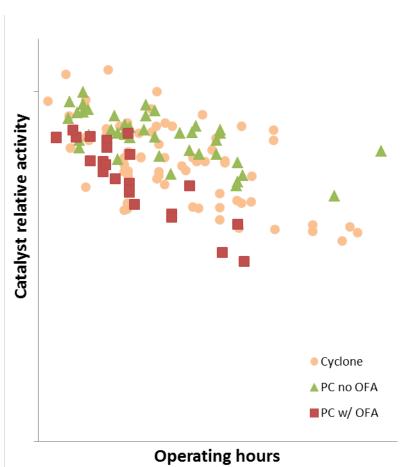

Presentation Outline

- SCR Design Approach for PRB Units
- Field Experiments → Mechanistic Insight
- Practical Application

Cormetech PRB Experience

- More than 40 SCR units firing 100% PRB or high PRB blends
- First unit began operation in early 2000
- Longest running unit has >68,000 operational hours
- 7, 8, and 9 mm pitch catalyst

Catalyst Design Tools Predicting K/Ko for PRB-Firing Units



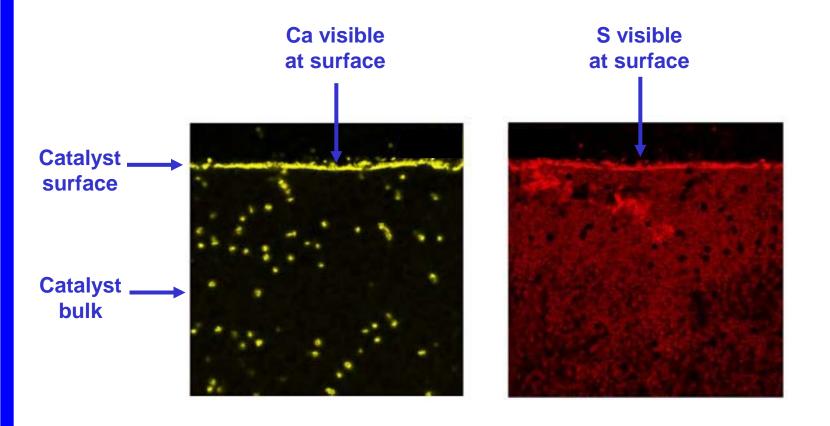
- Models
 - Expected calcium and phosphorus accumulation rates
- Unit specific / similar unit historical data
- Fly ash sampling and characterization (t ~ 24 100 h)
 - Provides insight into deactivation tendency of the fly ash for a unit
 - Methods were developed during Cormetech's field experimentation
 - Bulk fly ash (isokinetic):
 - SO₃ reaction with fly ash in lab to test gaseous P₂O₅ generating potential
 - Size segregated fly ash (DLPI):
 - P mass balance across SCR to gage vaporization loss
 - SO_3 reaction with fly ash disks in lab to test gaseous P_2O_5 generating potential
- Slipstream reactor testing (t ~ 3k-8k h)

2012 NOx-Combustion Round Table February 14, 2012

Catalyst Deactivation Audit Data

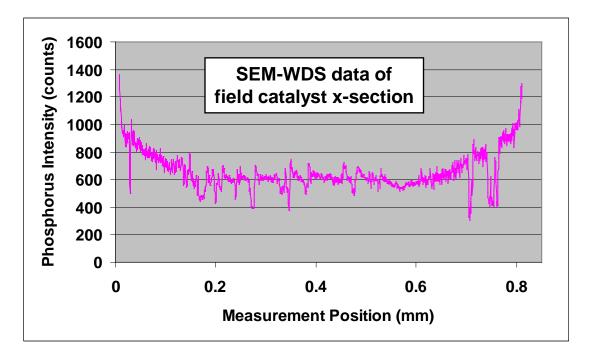
- Wide range of measured catalyst deactivation rates
 - Calcium blinding is primary mode
 - Phosphorus impact is variable
 (<10% to ~50% of K/Ko loss)
 - Elevated Na₂O, Fe₂O₃, SiO₂, and SO₃ also typically observed
 - "Staged" combustion units can have high or low deactivation rates

Catalyst Deactivation Species PRB-Fired Applications



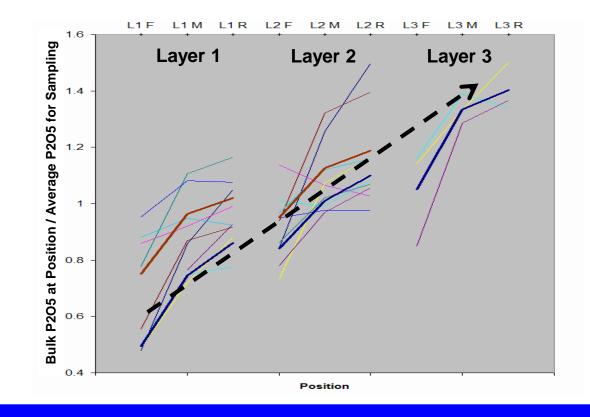
Deactivating Species	Source	Deactivation Mechanism
Са	CaO-rich particles in sub-micron ash fume	Particles lodge in pore structure at catalyst wall surface, expand by sulfation, and block pore
Р	Ca ₃ (PO ₄) ₂ -rich particles in sub-micron ash fume	Release of gas-phase P by reaction with SO ₃ produced in SCR; gas- phase P diffuses into catalyst wall, and reacts with active sites
Na	Water-Soluble Na in Ash	Na transfers from ash to catalyst, migrates into catalyst wall, and reacts with active sites

Catalyst Deactivation Mechanism Calcium Deactivation


SEM-EDS data of CaSO₄ catalyst blinding layer

Catalyst Deactivation Mechanism Phosphorus Deactivation

- Phosphorus is a penetrating catalyst poison:
 - Diffuses into catalyst bulk and chemically bonds to active sites
 - Wall x-section profile indicative of gas-phase P (i.e., $H_3PO_{4(q)}$)



Catalyst Deactivation Mechanism Phosphorus Deactivation

• PRB: Bulk P₂O₅ typically increases with catalyst length

- Unexpected behavior for a gas phase poison

Presentation Outline

- SCR Design Approach for PRB Units
- Field Experiments → Mechanistic Insight
- Practical Application

Field Experiments Overview

- Ran field tests at three Plant sites (2008 2010)
 - All Plants are >500 MW PC units firing 100% PRB

Plant	Staged Combustion?	SCR Catalyst Deactivation Rate	Relative Contribution of Ca vs. P to Deactivation
A	YES	HIGH	balanced Ca and P
В	NO	LOW	low deactivation rate
С	YES	MEDIUM - HIGH	mainly Ca, some P

• Factors studied:

- Coal mine, load (full and partial), degree of combustion staging

• Sampling methods:

- Coal, isokinetic and size-segregated fly ash, gas phase P, NOx
- Field experiments provided key mechanistic insights

Gas Phase P Measurements Plants A (SCR Inlet and Outlet) and B (SCR Inlet)

		Testing Day 1 Data		Testing Day 2 Data	
	Unit Catalyst Deactivation Rate	SCR Inlet P2O5(g) [ppbvd]	SCR Outlet P2O5(g) [ppbvd]	SCR Inlet P2O5(g) [ppbvd]	StDev P2O5(g) [ppbvd]
Plant A	High	2.7	3.5	2.1	2.1
Plant B	Low	1.4 <u>+</u> 0.5	not measured	3.9 <u>+</u> 0.7	not measured

- Plants A and B: no significant measured difference for gas phase P concentration at the SCR inlet
 - Also: the measured values are too low to account for the rate of bulk P_2O_5 accumulation observed in the catalyst audit samples

Phosphorus Volatilization from Ash

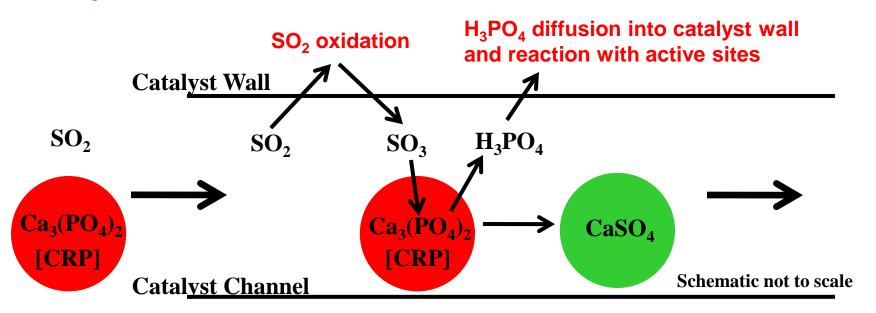
Thermodynamics for Reaction of Metal Phosphates with SO₃

	300°C	400°C
Reaction	delta G [kJ]	delta G [kJ]
Ca3(PO4)2 + 3SO3(g) + 3H2O(g) = 3CaSO4 + 2H3PO4(g)	-125.7	-71.7
2FePO4 + 3SO3(g) + 3H2O(g) = Fe2(SO4)3 + 2H3PO4(g)	35.5	70.6
2AIPO4 + 3SO3(g) + 3H2O(g) = AI2(SO4)3 + 2H3PO4(g)	107.4	164.4
Mg3(PO4)2 + 3SO3(g) + 3H2O(g) = 3MgSO4 + 2H3PO4(g)	61.9	117.6

- In SCR temperature range: solid Ca₃(PO₄)₂ has a thermodynamically-favored reaction pathway for releasing gas phase phosphorus by reaction with SO₃
- Ca₃(PO₄)₂ is a <u>c</u>ondensed <u>r</u>eactive <u>p</u>hosphorus (CRP)

Laboratory Data

Confirmation of Thermodynamic Calculations

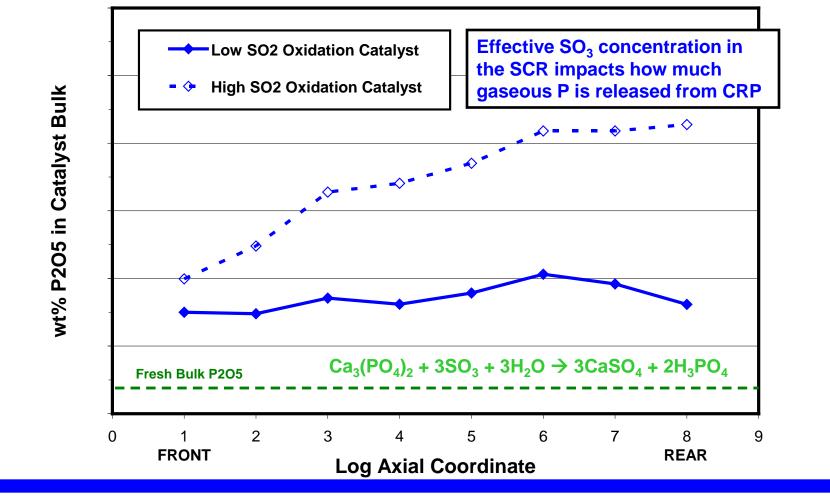

- We generated gas phase phosphorus in lab testing by reacting gaseous SO₃ (at SCR conditions) with:
 - Pure Ca₃(PO₄)₂ (confirmed the thermo)
 - Isokinetic bulk fly ash (SCR inlet) from Plants A, B, and C:

Plant	Unit Catalyst Deactivation Rate	Unit Operation	Average H3PO4(g) Generated in Test Relative to Plant A
Plant A	High	Staged Operation	1.00
Plant B	Low	Non-Staged	0.31

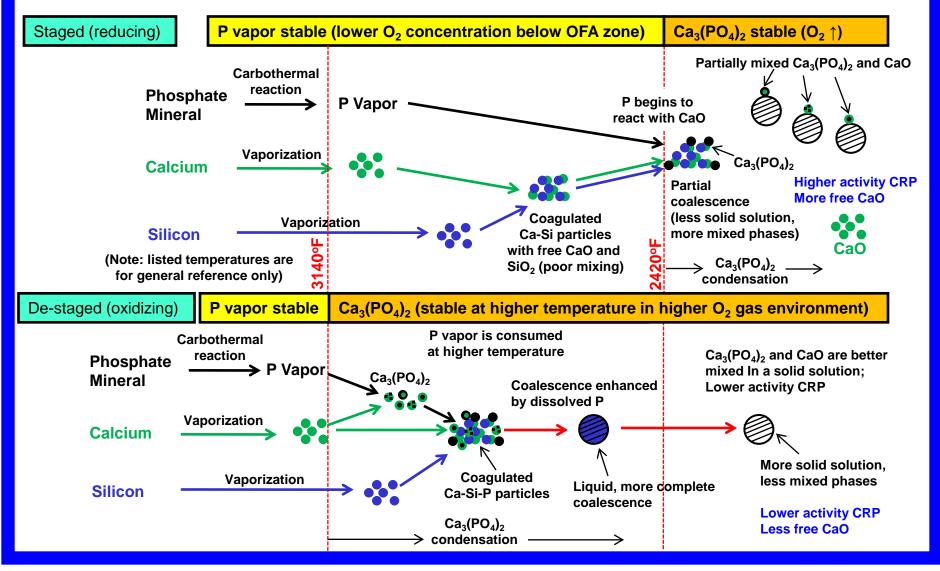
Catalyst audit data: Plant A catalyst has 3x higher bulk accumulation rate for phosphorus than Plant B catalyst.

Table: Lab test data for SO₃ reaction with fly ash from Plants A and B to generate gas phase P

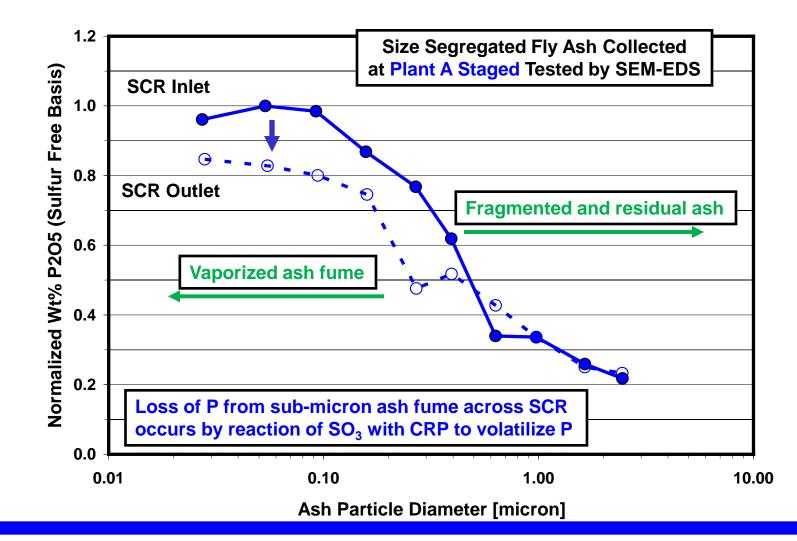
Phosphorus Release Mechanism


- SO₃ concentration increases with catalyst length, increasing the amount of gaseous P released
 - Explains why bulk P in catalyst increases with catalyst length
 - <u>Amount of P released will depend on</u>: saturation vapor pressure of P over the CRP (solid solution) and effective SO₃ concentration

CORMETECH

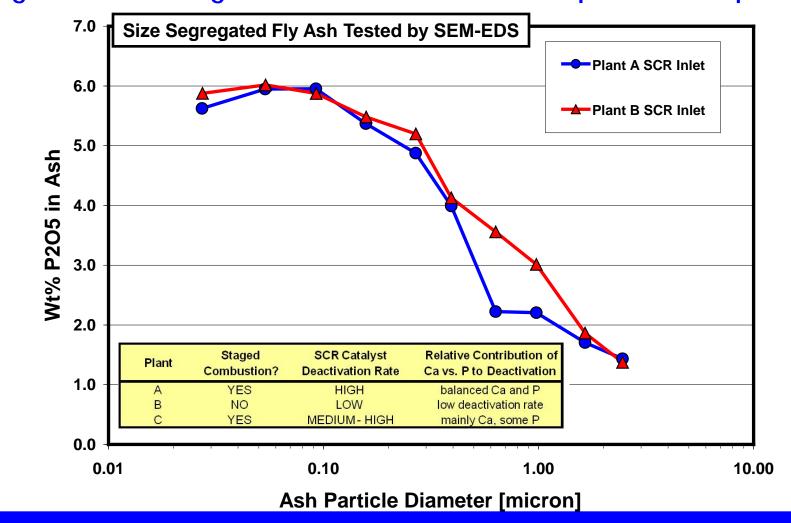

Field Catalyst Data

Loaded two $\frac{1}{2}$ catalyst samples (low and high SO₂ oxidation rate catalyst) in single sample tray and loaded it into a <u>Plant A</u> SCR module for field aging.



Proposed CRP Formation Mechanism

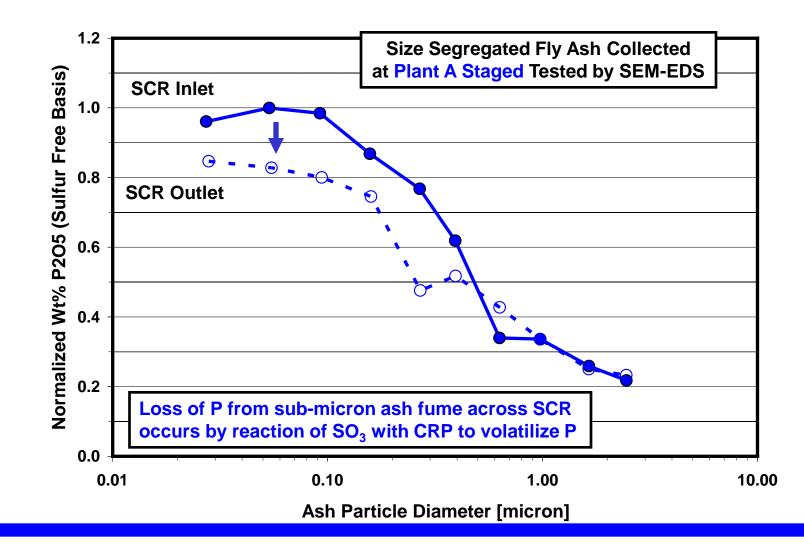
2012 NOx-Combustion Round Table February 14, 2012 CORMETECH


CRP Exists in Sub-Micron Ash Fume CORMETECH CRP is Formed by Vaporization/Condensation Process in Furnace

CRP Exists in Sub-Micron Ash Fume CORMETECH CRP is Formed by Vaporization/Condensation Process in Furnace

SCR Inlet P in Ash Data for Plants A & B cormetech Staged vs. Non-Staged Combustion has Little Impact on P Vaporization

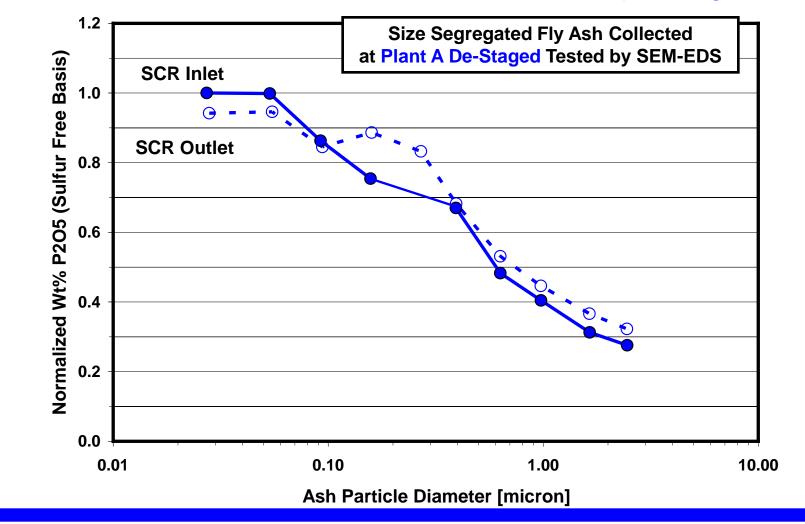
Carbothermal Reduction Process Mechanism of Phosphorus Vaporization from Coal


- Phosphorus in PRB coal is mainly crandallite (a mineral phosphate): CaAl₃(PO₄)₂(OH)₅·(H₂O)
- Crandallite can vaporize in the burning char particle by reaction with C and SiO₂ releasing gas phase P in furnace (process is called carbothermal reduction):

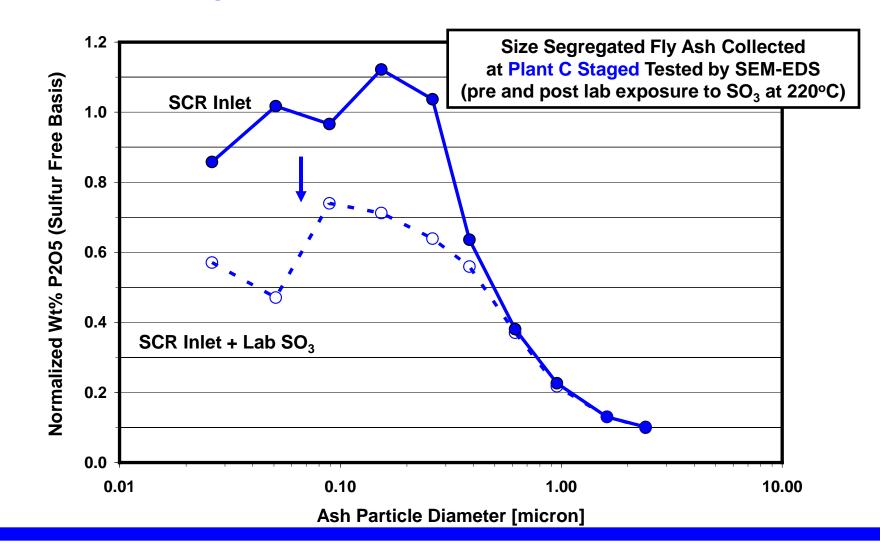
- $CaAl_3(PO_4)_2(OH)_5(H_2O) + SiO_2 + C \rightarrow 2P_{(g)} + CO_{(g)} + [CaAlSiO_3]$

- The burning char particle is a reducing environment <u>under staged or non-staged</u> combustion conditions
- Key for CRP formation are the reactions that occur after phosphorus is vaporized from the char particle

Plant A – Staged Combustion

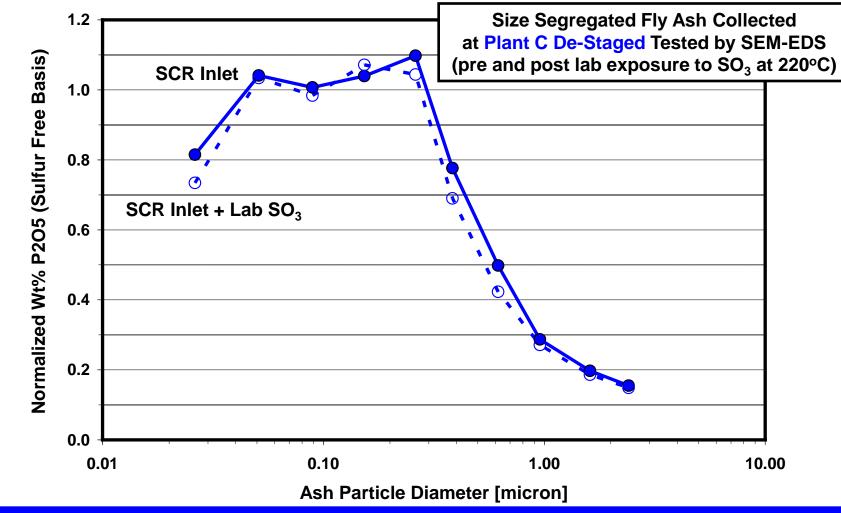


De-Staging Reduces CRP Activity



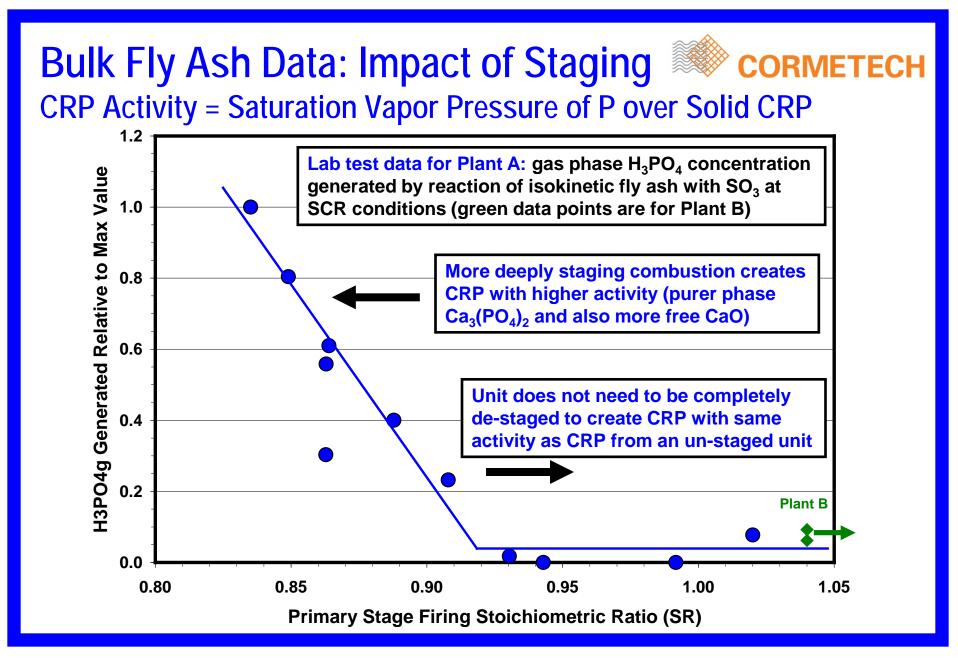
Lower Amount of P Loss Across SCR for Plant A Operating De-Staged

Plant C – Staged Combustion


2012 NOx-Combustion Round Table February 14, 2012

Page 25

De-Staging Reduces CRP Activity



Lower Amount of P Loss for Plant C Operating De-Staged

2012 NOx-Combustion Round Table February 14, 2012

Page 26

²⁰¹² NOx-Combustion Round Table February 14, 2012

Mechanism Summary

• Free CaO and CRP exist in the sub-micron ash fume:

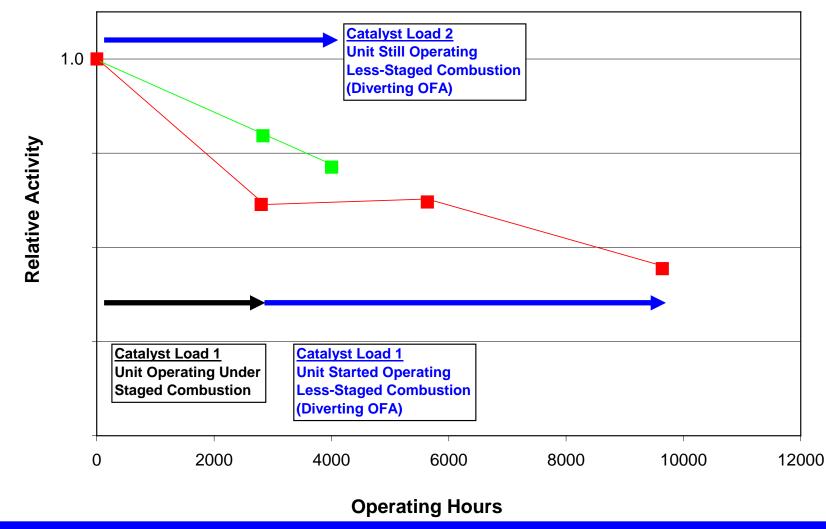
- P, Ca, and Si vaporize from the burning coal char particle
- CRP formation is driven by the condensation reactions that occur post-vaporization between gaseous P and condensed free CaO

• Staged combustion:

- Cooler combustion & lower O₂ in the primary combustion zone
 - Less coalescence/mixing of condensed CaO and SiO₂ particles
 - Gaseous P condenses in OFA zone as surface enriched Ca₃(PO₄)₂
 - More free CaO and higher activity CRP → higher deactivation rate

• Partially de-staged and non-staged combustion:

- Hotter combustion & higher O₂ in the primary combustion zone
 - More coalescence/mixing of CaO/SiO₂ particles (calcium silicate)
 - Gaseous P condenses as diluted Ca₃(PO₄)₂ and may react with SiO₂ to form phosphate glasses
 - Less free CaO and lower activity CRP \rightarrow lower deactivation rate


Presentation Outline

- SCR Design Approach for PRB Units
- Field Experiments → Mechanistic Insight
- Practical Application

Partial De-Staging Impact Data PC Unit Firing 100% PRB

2012 NOx-Combustion Round Table February 14, 2012

Page 30

Mitigation Cost/Benefit Analysis Requires Case Specific Evaluation

- Partial de-staging?
 - Costs:
 - More K/AV required to achieve higher DeNOx
 - Higher NH₃ usage rate
 - Combustion modification capability and engineering
 - Benefits:
 - Lower catalyst deactivation rate (for Ca & P) → lower overall K/AV
 - Reduce catalyst volume (lower DP) and/or extend catalyst life
- Lower SO₂ oxidation catalyst?
 - Costs:
 - Loss of initial K due to formulation change \rightarrow more volume/DP
 - Benefits:
 - Lower catalyst deactivation rate (for P, but not Ca)
- Other options?

Summary

- More than 40 SCR units firing 100% PRB or high PRB blends
- Wide range of measured catalyst deactivation rates
- Deactivation models, Unit specific / similar unit historical data, Fly ash sampling and characterization, and Slipstream reactor testing are used to manage the uncertainty of deactivation rates
- Field experiments provided key mechanistic insights
 - Gas phase P is generated within the SCR by reaction of CRP $[Ca_3(PO_4)_2]$ with SO₃
 - More deeply staging combustion creates CRP with higher activity (purer phase $Ca_3(PO_4)_2$ and also more free CaO) that leads to more severe catalyst deactivation.
 - Unit does not need to be completely de-staged to create CRP with same activity as CRP from an un-staged unit
- SCR catalyst test data has shown the beneficial impact of modest de-staging on deactivation rate

QUESTIONS?

2012 NOx-Combustion Round Table February 14, 2012

Page 33