Effect of SCR Catalyst on Mercury Speciation

Chun W. Lee and Ravi K. Srivastava U.S. Environmental Protection Agency National Risk Management Research Laboratory Research Triangle Park, NC 27711

S. Behrooz Ghorishi and Jarek Karwowski

ARCADIS Geraghty & Miller

Thomas W. Hastings Cormetech, Inc.

Joseph Hirschi Illinois Clean Coal Institute Combined Power Plant Air Pollutant Control Mega Symposium August 30 - September 2, 2004, Washington, DC

Background

- Speciation influences emissions control
 - Wet FGD captures high percentage of ionic Hg²⁺
 - Volatile elemental Hg⁰ is difficult to capture
- Many Selective Catalytic Reduction (SCR) units are meeting stringent NO_X regulations
 - 100 GW coal-fired capacity will employ SCR by 2005
 - Oxides of vanadium/titanium (V₂O₅/TiO₂) catalyst
 - Ammonia (NH₃) or urea (NH₂CONH₂) reductant
- SCR has an impact on mercury speciation
 - Limited field data in Europe and U.S.
 - Increase in Hg²⁺ across SCR reactor

RESEARCH & DEVELOPMENT

Hg Chemistry in SCR Systems

- Apparent dependence on coal type
 - Higher Hg²⁺ across SCR for bituminous coal-fired boilers
 - Little change in Hg speciation across SCR for subbituminous (Powder River Basin, [PRB]) coal-fired boilers
- Possible effects of SCR system
 - Changes in flue gas chemistry (NO_X, NH₃, SO₃)
 - Catalytic oxidation by vanadium based catalysts
- Effects of SCR catalyst age and residence time on Hg⁰ oxidation are not well understood
 - Important for SCR to be a viable technology for Hg speciation modification

RESEARCH & DEVELOPMENT

- Evaluate Hg speciation effects of SCR technology for Illinois bituminous and PRB coal combustion flue gases
 - No prior SCR Hg field studies on Illinois coals
- Understand the effects of SCR catalyst age and residence time on Hg⁰ oxidation

RESEARCH & DEVELOPMENT

Approach

- Pilot-scale SCR experiments
 - Assess Hg⁰ oxidation during firing of Illinois and PRB coals with Ontario Hydro (OH) method
- Bench-scale SCR experiments
 - Fresh and aged catalyst from bituminous coal-fired utility power plant
 - Field-aged sample collected after 2 ozone seasons
 - Residence time studied by varying catalyst length (at constant flow)
 - Simulated flue gas and SCR operating conditions
 - Triplicate run with on-line Hg⁰ analyzer (Seefelder)

RESEARCH & DEVELOPMENT

Pilot-Scale Coal Combustion and SCR System

- Vertical down-fired combustor (6"ID X 13'L)
- 150 kBtu/hr firing rate
- Two SCR catalysts (1.25 m each)
- 2 Sootblowers
- SV: ~ 3000 hr⁻¹
- OH sampling at SCR inlet and outlet

RESEARCH & DEVELOPMENT

Pilot-Scale SCR Reactor

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Characteristics of Coals Tested

Content	PRB	Turris (Illinois)	Crown II	Galatia (Illinois)
	Black Thunder	(Medium S/Cl)	(Illinois)	(Low S/high Cl)
			(High S/low Cl)	
% Moisture	14.00	16.99	16.07	11.33
% Ash	5.92	9.26	7.34	6.29
% Volatile	37.33	33.89	37.05	34.16
% Fixed C	42.76	39.85	39.55	48.22
HV (Btu/lb)	9,903	10,531	10,877	12,179
%C	59.71	59.00	60.48	68.31
%H	3.83	4.32	4.70	4.50
%N	0.82	1.19	1.07	1.50
% S	0.29	3.11	3.48	1.13
%O	15.44	5.96	5.73	6.94
%Cl	NA	0.17	0.13	0.29
Hg, ppmw	NA	0.07	0.07	0.09

NA: not available

۲

RESEARCH & DEVELOPMENT

Pilot-Scale SCR Test Conditions

Parameter	Turris	Galatia	Crown	PRB
			Π	
Coal feed rate, lb/hr	14.0	11.5	13.4	15.7
Firing rate, Btu/hr	147,540	140,424	145,208	155,873
Total air flow, scfm	28.6	28.2	28.4	28.9
Excess air, %	11	18	11	5
CO, ppm (dry)	38	30	40	0
Uncontrolled NO _x ,	960	850	650	525
ppm (dry)				
SO_2 , ppm (dry)	2921	929	2739	222
Air in-leakage	4	4	11	16
(calculated), %				

RESEARCH & DEVELOPMENT

Pilot-Scale SCR Test Conditions (Continued)

Parameter	Turris	Galatia	Crown	PRB
			11	
Temperature, °C	365	342	352	364
NOx reduction across				
SCR, %	90	86	90	90
HCl (measured), ppm		216		
(wet)	INIM	246	INIM	INIM
HCl (calculated), ppm	1/1	208	06	7.0
(wet)	141	208	90	7.9
PM at SCR inlet*,	5962	2070	2046	7/10
mg/dscm	3803	3070	3940	2418
PM at SCR outlet*,	2506	1725	2560	1606
mg/dscm	3300	1/33	2300	1000

NM: Not Measured

* Measured using the filter weight of the isokinetic OH method at the inlet and outlet of the SCR

RESEARCH & DEVELOPMENT

Illinois Bituminous Coal Test Results

SCR Inlet SCR Outlet

Mercury Speciation

RESEARCH & DEVELOPMENT

Black Thunder (PRB) Test Results

SCR Inlet SCR outlet

RESEARCH & DEVELOPMENT

Summary of Pilot Results

	Turris	Galatia	Crown	PRB	PRB
			II		Repeat
% Hg ⁰ at SCR inlet	68	73	84	97	96
% Hg ⁰ at SCR outlet	9	4	12	88	76
% Oxidation	87	94	85	9	21

RESEARCH & DEVELOPMENT

Bench-Scale SCR Reactor

RESEARCH & DEVELOPMENT

Bench-Scale SCR Reactor

RESEARCH & DEVELOPMENT

Experimental Procedures

- Thermal pre-treatment of catalyst
 - Heating of catalyst overnight at 425 °C under N₂ flow
 - Minimize residual effect from previous experiment
- Catalyst pre-conditioning
 - Passing SO₂ and HCI through catalyst overnight at levels for next day's experiment
- Add Remaining flue gas components (O₂, CO₂, H₂O, NO, NH₃, Hg⁰) before experiment

RESEARCH & DEVELOPMENT

Simulated Bituminous Bench-Scale Results

	Design SV		High SV	
	Fresh	Aged	Fresh	Aged
Space Velocity (hr ⁻¹)	2263	2263	3031	3031
NO _x Reduction (%)	84	90	92	90
	87	86	91	92
	87	85	91	92
Average Reduction (%)	85 <u>+</u> 2	87 <u>+</u> 3	91 <u>+</u> 1	91 <u>+</u> 1
Hg ⁰ Oxidation (%)	87	84	74	70
	88	86	78	68
	89	85	77	68
Average Oxidation (%)	88 <u>+</u> 1	85 <u>+</u> 1	76 <u>+</u> 2	69 <u>+</u> 1

- Aged catalyst sample: collected in the field after 2 ozone seasons (ca. 8000 hr)
- Operating conditions: 365 °C, 2250 ppm SO₂, 590 ppm NO_x, 531 ppm NH₃, 40 ppm HCl, 20 ppb Hg⁰, 4.2% O₂, 13.2% CO₂, 7.1% H₂O

RESEARCH & DEVELOPMENT

- Heterogeneous reactions over SCR catalyst promote Hg⁰ oxidation
- Pilot studies confirm coal type dependence
 - Illinois bituminous coal high levels of Hg⁰ oxidation
 - PRB coal low Hg⁰ oxidation at test conditions
- Bench-scale studies show sustained Hg⁰ oxidation
 - Field-aged and fresh SCR samples high Hg⁰ oxidation
 - Slight aging effect seen at high space velocity
- Implications
 - Illinois/bituminous SCR + FGD is a practical option
 - PRB/sub-bituminous SCR oxidation needs improvement

RESEARCH & DEVELOPMENT

Acknowledgement

This project is supported, in part, by grants made possible by the Illinois Department of Commerce and Economic Opportunity through the Office of Coal Development and Illinois Clean Coal Institute

RESEARCH & DEVELOPMENT

