Zero Ammonia Slip Technology for Combined Cycle Gas Turbine Exhaust

Thomas W. Hastings, Jun Murano and Frank Stevens Cormetech, Inc.

Akira Hattori Mitsubishi Power Systems, Inc.

Kozo Iida and Mashashi Kiyosawa Mitsubishi Heavy Industries, Ltd.

Power-Gen International : Environmental Issues with Combustion Turbines December 9-11, 2003 Las Vegas, Nevada

BREATHE DEEP

Outline

- Introduction
- Zero-Slip[™] Technology Description
- Pilot Test Results
- 7 MW Commercial Demonstration

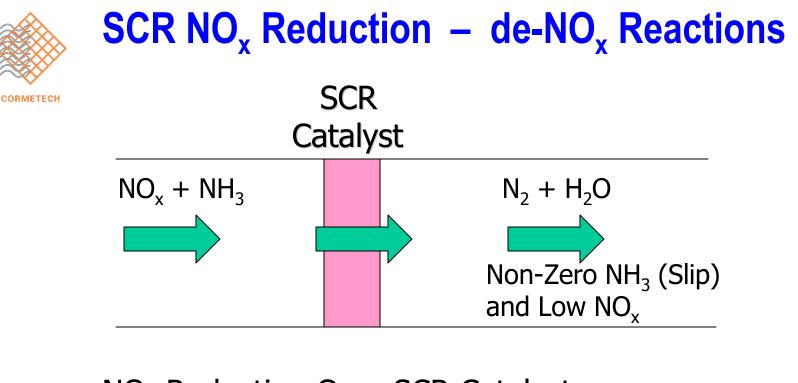
BREATHE DEEP

BREATHE EASY

Conclusions

Introduction

CORMETECH


• Selective Catalytic Reduction (SCR)

- Vanadia-Titania SCR Catalyst in Path of Flue Gas
 - "Honeycomb" Monolith with Channels for Gas Flow
- Ammonia Reductant (NH₃) Injected Upstream of Catalyst
- NO_x Reactant in Flue Gas (NO_x is an Ozone Precursor)
- Reduction of NO_x to N₂ and H₂ \hat{O} ("de-NOx Reaction")
- High Conversion of Flue Gas NO_x to Products
 - Permit Outlet NO_x Levels Typically 2-10 ppm

• Outlet Ammonia is Termed Ammonia Slip

- Non-Stoichiometric Local Conditions Across Catalyst
 - Flue Gas Flow Non-Uniformities
 - NH₃ Injection Grid Tuning to Match Flue Gas Flow
 - Inadequate Mixing Time
- Ammonia Slip Permit Levels
 - Typically 2-10 ppm or even 30 ppm

BREATHE IN BREATHE DEEP BREATHE EASY

$\frac{NO_x \text{ Reduction Over SCR Catalyst}}{NO + NH_3 + 1/4 O_2 → N_2 + 3/2 H_2O}$ NO + NO₂ + 2 NH₃ → 2 N₂ + 3 H₂O

Zero-Slip[™] Technology - Purpose

CORMETECH

• Ammonia Slip is Regulated in Some Localities

- NH₃ is not a Criteria Pollutant (Federal)
- Toxic Air Contaminant under SCAQMD Rule 1401
- Some Local Permit Agencies Require Control of NH₃ Slip

Local Regulations Have Tightened

- NO_x < 2 5 ppm
- NH₃ Slip < 2 3.5 ppm
- NH₃ Salt Formation Reactions Contribute to PM
 - $-2 \text{ NH}_3 + \text{H}_2 \text{SO}_4 \rightarrow (\text{NH}_4)_2 \text{SO}_4$
 - $NH_3 + HNO_3 \rightarrow NH_4NO_3$
 - NH₃ Sources
 - Fertilizers
 - Animal Feeding Operations
 - SCR and SNCR Ammonia Slip (Relatively Small)
- Regional Haze

BREATHE IN

BREATHE DEEP

Outline

- Introduction
- Zero-Slip[™] Technology Description
- Pilot Test Results
- 7 MW Commercial Demonstration

BREATHE DEEP

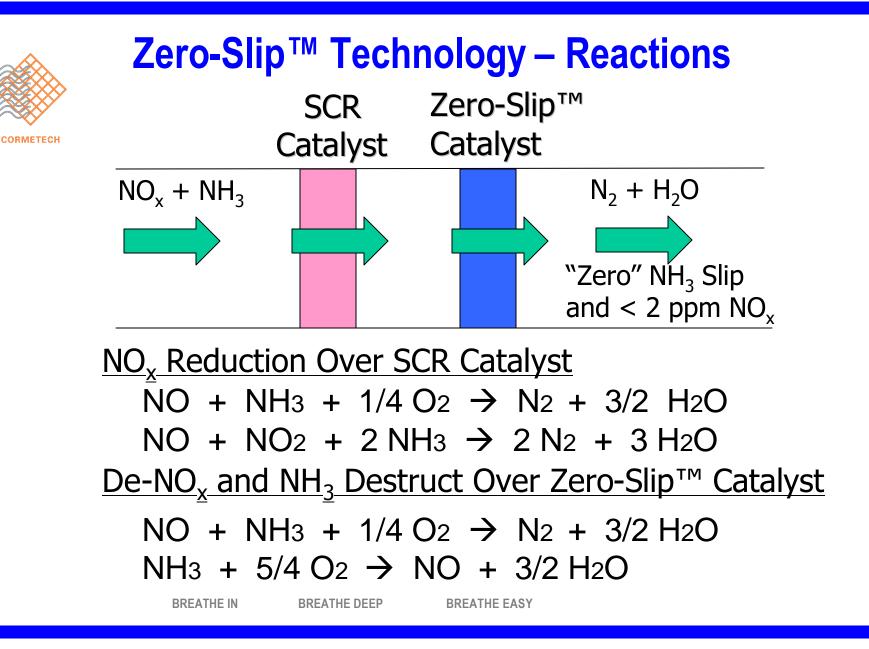
BREATHE EASY

Conclusions

Zero-Slip[™] Technology - Description

CORMETECH

- Enhanced SCR Technology for Combined Cycle Gas Turbines to Achieve down to "Zero" NH₃ Slip
- Mitsubishi/Cormetech Joint Development
 - Patented
 - Demonstrated Commercially

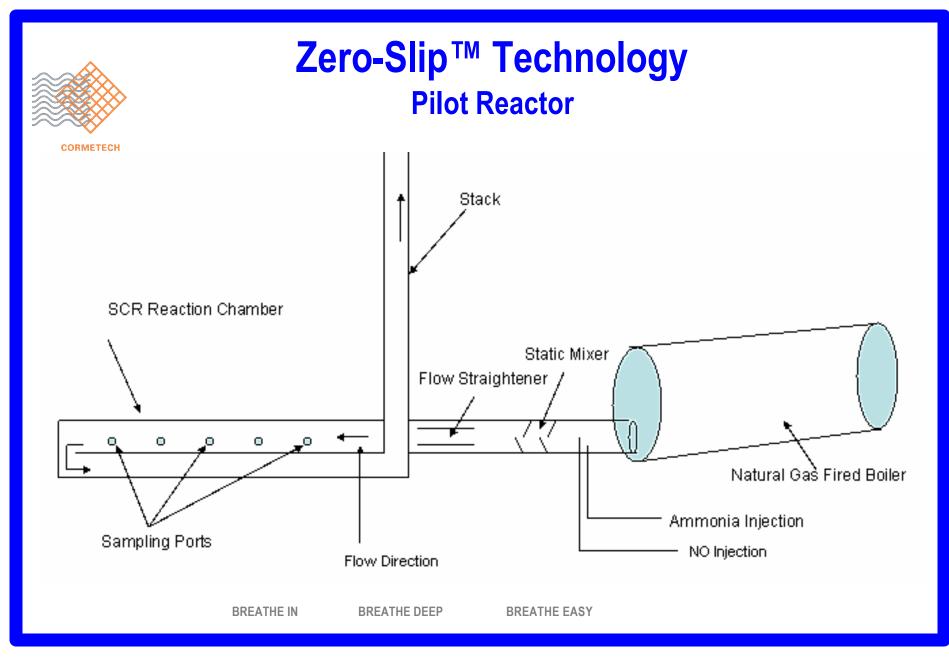

General Features

- Standard SCR Catalyst and Zero-Slip[™] Catalyst Layers
 - Zero-Slip[™] Catalyst Composition is Proprietary
- NH₃ Injection Above Stoichiometric
- Promotion of Good Mixing
- Destruction of Ammonia over Zero-Slip[™] Catalyst
- Can Achieve Down to "Zero" Ammonia at the Outlet
- Applicable to New Units and Retrofits

Zero-Slip[™] Technology Schematic Drawing for Typical Split Heat Recovery Steam Generator (HRSG)

Static SCR Catalyst Mixer AIG Zero-Slip™ Catalyst Flue Gas from Gas Turbine HRSG HRSG STACK ZERO SLIP[™] SYSTEM **BREATHE EASY BREATHE IN BREATHE DEEP**

Page 9

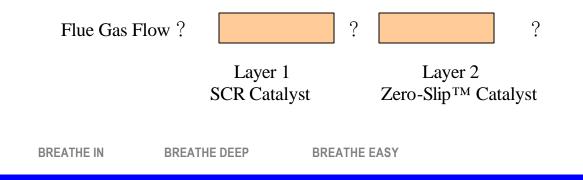

Outline

- Introduction
- Zero-Slip[™] Technology Description
- Pilot Test Results
- 7 MW Commercial Demonstration

BREATHE DEEP

BREATHE EASY

Conclusions



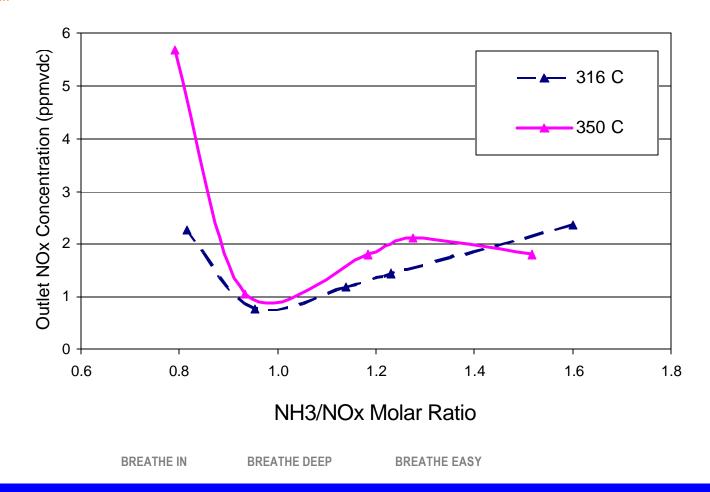
Zero-Slip[™] Technology Pilot Study - Test Conditions

CORMETECH

Target Test Condition Number	1	2	3	4	5
NO _x Inlet Concentration (ppmvdc)	32	32	32	32	32
O ₂ Concentration (volume %)	12.4	12.4	12.4	12.4	12.4
H ₂ O Concentration (volume %)	10.7	10.7	10.7	10.7	10.7
Superficial Gas Velocity (Nm/s)	1.23	1.23	1.23	1.23	1.23
Gas Flow (SCFM)	61.9	61.9	61.9	61.9	61.9
NH ₃ /NO _x Molar Ratio	0.80	0.90	1.14	1.23	1.60

Zero-Slip[™] Technology Pilot Study - Test Results – NH₃ Slip < 0.1 ppm

CORMETECH


NH ₃ /NO _x Molar Ratio (Inlet)	Temperature (°C)	Ammonia Slip by FTIR (ppmvdc)	Outlet NO _x by FTIR (ppmvdc)	Estimated NO _x Conversion (%)
0.81	316	0.01	2.3	96%
0.95	316	0.07	0.8	99%
1.14	316	0.02	1.2	98%
1.23	316	0.02	1.4	97%
1.60	316	0.01	2.3	96%
0.79	350	0.01	5.7	90%
0.93	350	0.04	1.0	98%
1.18	350	0.01	1.8	97%
1.27	350	0.01	2.1	96%
1.52	350	0.01	1.8	97%

BREATHE IN

BREATHE DEEP

Zero-Slip[™] Technology Pilot Study - Test Results for Outlet NO_x

CORMETECH

Page 14

Outline

- Introduction
- Zero-Slip[™] Technology Description
- Pilot Test Results
- 7 MW Commercial Demonstration

BREATHE DEEP

BREATHE EASY

Conclusions

Zero-Slip[™] Technology Commercial Demonstration

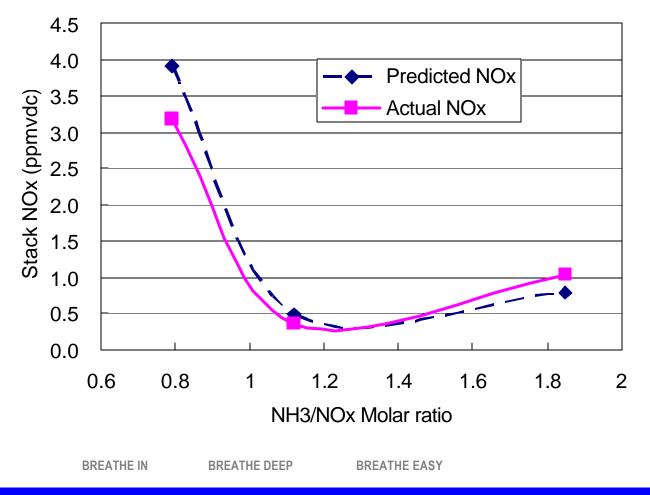
- Host: Paramount Petroleum Corp.
- Location: Los Angeles Basin
- Unit: 7 MW Cogeneration

BREATHE IN

BREATHE DEEP

Commercial Demonstration Initial Performance at Startup - Test Conditions

Gas Turbine Load (MW)	5	5	5
Flue Gas Temperature (°C)	355	355	355
Flue Gas Temperature (°F)	670	670	670
Inlet Oxygen (vol. %, dry)	13.1	13.1	13.1
NH ₃ /NO _x Molar Ratio	0.8	1.1	1.8


BREATHE IN

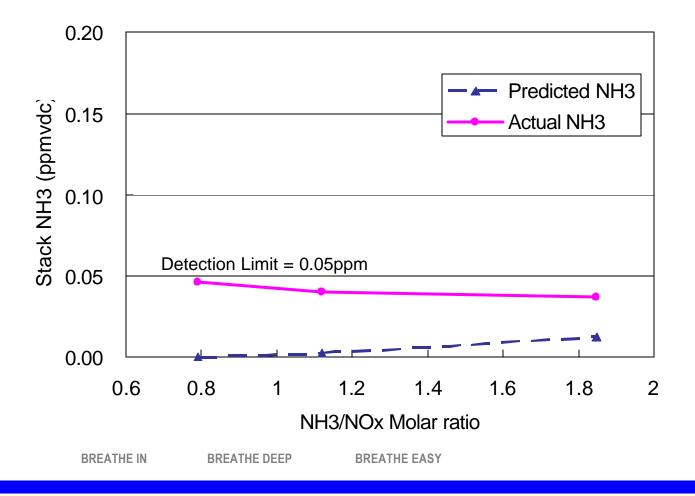
BREATHE DEEP

Commercial Demonstration

Initial Performance at Startup – NO_x vs. Molar Ratio

Commercial Demonstration

Initial Performance – NO_x Conversion vs. Molar Ratio



Page 19

CORMETECH

Commercial Demonstration Initial Performance – NH₃ Slip vs. Molar Ratio

Commercial Demonstration Performance Results after 3000⁺ Hours

Gas Turbine Load (MW)	5	5
Flue Gas Temperature (°C)	322	324
Flue Gas Temperature (°F)	611	615
Inlet Oxygen (vol. %, dry)	14.8	14.8
NH ₃ /NO _x Molar Ratio	0.9	1.3
Outlet NO _x (ppmvdc)	1.5	0.4
Outlet NH ₃ (ppmvdc)	Less than detection limit	0.10 (at detection limit)

BREATHE IN

BREATHE DEEP

Outline

- Introduction
- Zero-Slip[™] Technology Description
- Pilot Test Results
- 7 MW Commercial Demonstration

BREATHE DEEP

BREATHE EASY

Conclusions

Zero-Slip[™] Technology - Conclusions

CORMETECH

A Commercial Zero-Slip[™] System has been Successfully Operated for over 8 Months

- Achieved Ammonia Slip < 0.1 ppm (Effectively "Zero")
- Achieved High NO_x Reduction Levels and Low Outlet NO_x
 - ~0.5 ppm NO_x Outlet Concentration Initially
 - 2.0 ppm NO_x Outlet Concentration Expected at End of Life

• The Design Model Accurately Predicted Scale-Up

• Zero-Slip[™] Systems are Available Commercially

- Applicable to Combined Cycle Gas-Fired Units
 - New and Retrofit
- System Design is Flexible to Meet Customer Needs
 - Extremely Low NO_x Levels, and/or
 - Extremely Low Ammonia Slip

Acknowledgements

- Paramount Petroleum Corp. for providing the host site for the commercial demonstration
- Midac Corp. for providing FTIR CEM for commercial demonstration
- General Electric for providing source testing services for field measurements

