SCR and Zero-Slip[™] Technology June 17, 2003 Turbo Expo - Atlanta, GA

Mitsubishi Heavy Industries, Ltd.

Cormetech, Inc. (MHI/Corning JV), Durham, NC Co-Author: T. W. Hastings

Mitsubishi Power Systems, Inc., Orlando, FL and Newport Beach, CA Co-Author: A. Hattori

Presentation Outline

- Mitsubishi/Cormetech Background
- **SCR Experience**

Mitsubishi Experience

- * Leading SCR System Supplier in the World
 - Pioneered SCR Systems in Japan in 1970's
 - Delivered/Installed > 500 units
 - Various Applications:
 - > Boiler, GT, Diesel Engine, FCC, Process Heater
 - Various Fuels:
 - > Coal, Oil, Natural Gas, Orimulsion, BFG, COG and etc.
- Examples
 - Highest NOx Removal (>95%) at T-Point 330MW GTCC, which is Mitsubishi's 501G verification power plant since1997 at Takasago Machinery Works in Japan
 - Lowest Emissions (< 2 ppm NOx and NH3) at ANP/Blackstone GTCC
 - High Temperature Applications
 - > 1000 °F class GT simple cycle (2 units in Kanagawa, Japan)

Cormetech Experience – SCR Catalysts

- #1 SCR catalyst supplier: > 700 Units
 - Gas Turbines: 437 units
 - Gas Boilers: 56 units
 - ➢ Utility Coal Boilers: 67 units
 - Refining & Industrial: 126 units
 - Stationary Diesel Engines: 17 units
- 100% Performance Warranty Compliance
- 100% On-Time Deliveries
- Highest NOx Removal Efficiencies
 - > 95% at SCE Mandalay (Gas-Fired Boiler)
 - > 93% at AECI New Madrid 2 (PRB Coal-Fired Boiler)
- Lowest NOx emissions
 - ➤ Ten units with less than 2 ppm NOx and 2 ppm NH3 Slip

Innovation in SCR Systems & Catalysts

- High Performance SCR for Gas
 Turbines and Coal-Fired Boilers
- High Temperature (1,000°F Class) SCR for Simple Cycle Gas-Fired Plants
- Ultra-Low Emission SCR for Combined Cycle Plants

Zero-Slip[™] Technology - Purpose

- Tighter Regulations (e.g. Southern CA, Mass.)
 - ➢ NOx < 2 5 ppm</p>
 - ➢ NH3 Slip < 2 3.5 ppm</p>
- Upcoming Particulate Matter (PM) Regulations

➢ NH3 is Constituent of PM

- Mitsubishi/Cormetech Technology Development
 - "Zero" Ammonia Slip Technology
- Applicability of Zero-Slip[™] Technology
 - Gas-Fired Combined Cycle De-NOx New or Retrofit
- ✤ Future: < 1 ppm NOx Versions</p>

Chemical Composition of PM2.5 in 2000

Zero-Slip[™] Technology - Purpose

- Tighter Regulations (e.g. Southern CA, Mass.)
 - ➢ NOx < 2 5 ppm</p>
 - ➢ NH3 Slip < 2 3.5 ppm</p>
- Upcoming Particulate Matter (PM) Regulations

➢ NH3 is Constituent of PM

- Mitsubishi/Cormetech Technology Development
 - "Zero" Ammonia Slip Technology
- Applicability of Zero-Slip[™] Technology
 - Gas-Fired Combined Cycle De-NOx New or Retrofit
- ✤ Future: < 1 ppm NOx Versions</p>

Zero-Slip[™] Technology

- Enhanced SCR Technology for Gas Turbines to Achieve "Zero" Ammonia Slip
- ★ Zero-Slip[™] System Consists of Typical SCR System, Plus the Zero-Slip[™] Catalyst:
 - SCR and Zero-Slip[™] Catalysts
 - Reactor Housing
 - >Ammonia Injection Grid (AIG) & NH3 Skid
 - Static Mixer (if needed)

Zero-Slip[™] System Configuration

Reactions

DeNOx Reactions Over SCR Catalyst

NO + NH₃ + 1/4 O₂ \rightarrow N₂ + 3/2 H₂O NO + NO₂ + 2 NH₃ \rightarrow 2 N₂ + 3 H₂O Zero-Slip Reactions Over Zero-SlipTM Catalyst NO + NH₃ + 1/4 O₂ \rightarrow N₂ + 3/2 H₂O 4 NH₃ + 3 O₂ \rightarrow 2 N₂ + 6 H₂O

Durability Tests

- & Lab-Scale Test
 - ≥1,800 Hrs in the Presence of 100 ppm SO_x
 - Result: Negligible Change in Catalyst Activity
- Samples in Full-Scale Commercial Unit
 - ➢Operating Time > 3,000 Hours
 - ➢Results:
 - Meets Expected Outlet NOx and NH3 Slip
 - Small Activity Decline per Expectation

Full-Scale Commercial Demonstration

- Host: Paramount Petroleum Corp.
- Location: Los Angeles Basin
- Unit: 7 MW Cogeneration
- Startup: January 2003

Full-Scale Commercial Demonstration

- Startup: January 2003
- Operating Time: 3,000 Hours
- Result: Meeting Performance Targets
 - >< 0.1 ppm NH3 Slip</p>
 - >< 2 ppm NOx</p>

Conclusions – Zero-Slip™ Technology

- ★ Zero-Slip[™] Technology has been Demonstrated Commercially
 - Guaranteed Performance: < 0.1 ppm NH3 and < 2.0 ppm NOx
 - > Actual Performance: Much Lower NH3 and NOx
- System Design is Flexible to Meet Customer Needs
 - Extremely Low NOx Levels, and/or
 - Extremely Low Ammonia Slip
- Handles Backup Oil Firing with Low Sulfur Oil