Cormetech SCR Catalyst Development for Low SO₂ to SO₃ Oxidation October 22, 2002 Presented at EPRI 2002 SCR Workshop ## **Governing Reactions** $$4NO + 4NH_3 + O_2$$ catalyst $4N_2 + 6H_2O$ (1) $$2SO_2 + O_2 \quad \text{catalyst} \quad SO_3 \tag{2}$$ Adverse affects caused by reaction (2): - → SO₃ plume - → Increased corrosion ## **Drivers and Objectives** - Drivers - ♦ Reduced contribution to SO₃ plume - Reduced corrosion - ❖ Reduced cost for SO₃ mitigation reagent - Objectives - Significant reduction in the formation of SO₃ - Maintenance of catalyst properties # **Catalyst Properties** NOx conversion reaction takes place within ~ 50 microns of catalyst surface due to fast diffusion of reactants (NH3, NOx, O2) SO₂ to SO₃ Oxidation slow and therefore dependent on total bulk catalyst weight (V, W) #### **Catalyst Properties** - ◆ Homogeneous - Catalyst has high poison resistance - ♦ Delamination not applicable - Erosion is controlled through material hardness - ♦ SO₂ oxidation is moderate with high open area product - Coated - Efficiently utilizes catalytic material - ♦ Minimizes SO₂ oxidation - Delamination potential increased with use of non-similar materials - Minimal poison resistance when applied to non-porous substrate Goal – Combine best properties of both catalyst types # **Hybrid Catalyst Properties** High activity catalyst application Porous Catalytic Substrate Result: High Performance SCR catalyst with decreased SO₂ oxidation without sacrificing performance attributes #### **German Plant Demonstration** | Unit size/type, MW | 705 – wall fired PC | |--|--| | Fuel | Bituminous | | Catalyst Description | Hybrid - 7.1 mm pitch — focus on Increase K @ low SO ₂ to SO ₃ oxidation | | Gas Velocity, m/s | 4.5 | | Temperature, deg C | 380 | | SO ₂ ppm | Nominal 500 Range 350-1000 | | SO ₃ ppm | Nominal 10 Range 7 – 20 | | SO ₂ to SO ₃ oxidation | 0.3% single layer | | Dust Loading, mg/Nm ³ | Design 10,000 | | | Range 5,300 – 25,000 | #### **German Plant Catalyst Sample** After ~ 45,000 Operating Hours #### **SEM Image - Wall Cross-section** After ~ 45,000 hours Exposure #### **SEM Image - Wall Cross-section @ Front** Fresh - Unexposed After ~ 45,000 hours #### **SEM Image - Wall Cross-section @ Rear** Fresh - Unexposed After ~ 45,000 hours #### German Reference Plant - K/Ko vs. Time #### **Innovative Products to Meet Customer Needs** - Advanced Extrusion Techniques alone or in Combination with Surface Treatments Results in: - ♦ Increased NOx Activity - ♦ Decreased SO₂ to SO₃ Conversion - Decreased impact on SO₂ to SO₃ conversion caused by vanadium deposition. # SO₂ to SO₃ Oxidation vs. Product #### Design Reference Inlet NOx = 0.5 lb/mmbtu Removal Efficiency = 90% NH_3 slip = 2 ppm #### Conclusions - Durability was commercially demonstrated for an extruded, surface-treated, SCR catalyst. - Chemical activity was maintained - ♦ Physical high integrity of surface - ◆Lower SO_2 to SO_3 oxidation is achievable. - ♦ 65% decreased rate with advanced products - ♦<0.2% oxidation possible in some cases </p> #### What Next? - ◆What are the Customer Requirements? - **♦** Oxidation rates - ♦ Schedule - - ◆ Reagent reduction - ◆ Reduced corrosion