Cormetech SCR Catalyst Development for Low SO₂ to SO₃ Oxidation

October 22, 2002

Presented at EPRI 2002 SCR Workshop

Governing Reactions

$$4NO + 4NH_3 + O_2$$
 catalyst $4N_2 + 6H_2O$ (1)

$$2SO_2 + O_2 \quad \text{catalyst} \quad SO_3 \tag{2}$$

Adverse affects caused by reaction (2):

- → SO₃ plume
- → Increased corrosion

Drivers and Objectives

- Drivers
 - ♦ Reduced contribution to SO₃ plume
 - Reduced corrosion
 - ❖ Reduced cost for SO₃ mitigation reagent
- Objectives
 - Significant reduction in the formation of SO₃
 - Maintenance of catalyst properties

Catalyst Properties

NOx conversion reaction takes place within ~ 50 microns of catalyst surface due to fast diffusion of reactants (NH3, NOx, O2)

SO₂ to SO₃ Oxidation slow and therefore dependent on total bulk catalyst weight (V, W)

Catalyst Properties

- ◆ Homogeneous
 - Catalyst has high poison resistance
 - ♦ Delamination not applicable
 - Erosion is controlled through material hardness
 - ♦ SO₂ oxidation is moderate with high open area product

- Coated
 - Efficiently utilizes catalytic material
 - ♦ Minimizes SO₂ oxidation
 - Delamination potential increased with use of non-similar materials
 - Minimal poison resistance when applied to non-porous substrate

Goal – Combine best properties of both catalyst types

Hybrid Catalyst Properties

High activity catalyst application

Porous Catalytic Substrate

Result: High Performance SCR catalyst with decreased SO₂ oxidation without sacrificing performance attributes

German Plant Demonstration

Unit size/type, MW	705 – wall fired PC
Fuel	Bituminous
Catalyst Description	Hybrid - 7.1 mm pitch — focus on Increase K @ low SO ₂ to SO ₃ oxidation
Gas Velocity, m/s	4.5
Temperature, deg C	380
SO ₂ ppm	Nominal 500 Range 350-1000
SO ₃ ppm	Nominal 10 Range 7 – 20
SO ₂ to SO ₃ oxidation	0.3% single layer
Dust Loading, mg/Nm ³	Design 10,000
	Range 5,300 – 25,000

German Plant Catalyst Sample

After ~ 45,000 Operating Hours

SEM Image - Wall Cross-section

After ~ 45,000 hours Exposure

SEM Image - Wall Cross-section @ Front

Fresh - Unexposed

After ~ 45,000 hours

SEM Image - Wall Cross-section @ Rear

Fresh - Unexposed

After ~ 45,000 hours

German Reference Plant - K/Ko vs. Time

Innovative Products to Meet Customer Needs

- Advanced Extrusion Techniques alone or in Combination with Surface Treatments Results in:
 - ♦ Increased NOx Activity
 - ♦ Decreased SO₂ to SO₃ Conversion
 - Decreased impact on SO₂ to SO₃ conversion caused by vanadium deposition.

SO₂ to SO₃ Oxidation vs. Product

Design Reference

Inlet NOx = 0.5 lb/mmbtu

Removal Efficiency = 90%

 NH_3 slip = 2 ppm

Conclusions

- Durability was commercially demonstrated for an extruded, surface-treated, SCR catalyst.
 - Chemical activity was maintained
 - ♦ Physical high integrity of surface
- ◆Lower SO_2 to SO_3 oxidation is achievable.
 - ♦ 65% decreased rate with advanced products
 - ♦<0.2% oxidation possible in some cases
 </p>

What Next?

- ◆What are the Customer Requirements?
 - **♦** Oxidation rates
 - ♦ Schedule
 - - ◆ Reagent reduction
 - ◆ Reduced corrosion