

SCR Catalyst Management and Improvement to Achieve and Maintain Mercury Oxidation Levels

Christopher Bertole

Cormetech, Inc.

Workshop "Flue Gas Cleaning 2013"

Presentation Outline

- Background
 - MATS
 - SCR Hg Oxidation Co-Benefit
 - Key Differences Between Hg and NOx Control

Catalyst Management for NOx, Hg, SO₃ Control

- Assess Unit Requirements
- Characterize Installed Catalyst
- Select Optimal Catalyst Action

Summary

Presentation Outline

- Background
 - MATS
 - SCR Hg Oxidation Co-Benefit
 - Key Differences Between Hg and NOx Control
- Catalyst Management for NOx, Hg, SO₃ Control
 - Assess Unit Requirements
 - Characterize Installed Catalyst
 - Select Optimal Catalyst Action

• Summary

MATS

- Focuses on:
 - Hg
 - HCI (as a surrogate for acid gas HAP)
 - Filterable PM (as a surrogate for non-Hg HAP metals)
- Requires compliance by 2015
 - Published in US Federal Register on February 16, 2012
 - Provides utilities with 3-year period to achieve compliance
 - 1 additional year is available (i.e., comply by 2016), if needed for technology installation
- Limits stack Hg emissions for existing units to:
 - 1.2 lbs Hg/Tbtu
 - 30 operating day rolling average basis

Key Differences for Hg vs. NOx Hg Control Requires a Full System View

DeNOx

 Performance requirements for the SCR are typically well defined due to sole role of the SCR for NOx reduction

Hg

 Performance requirements for the SCR typically not as well defined due to roles of downstream equipment in total compliance

Key Differences for Hg vs. NOx

More Factors Influence Hg Oxidation

DeNOx

- Key Parameters
 - NOx inlet
 - Efficiency
- Performance Threshold

- Slip
- Temperature
- SO₂ conversion (formulation)
- Fuel → contaminants → K/Ko
- Reactor condition
- O_{2,} H₂O, SO₂ (lower impact)

Hg

- Key Parameters
 - NOx inlet
 - Efficiency
 - Slip
 - Hg oxidation → Performance Threshold
 - Temperature
 - SO₂ conversion (formulation)
 - Fuel \rightarrow contaminants \rightarrow K/Ko
 - Reactor condition
 - Halogen (Fuel or additive)
 - Layer position (NH₃)
 - CO
 - O_{2,} H₂O, SO₂ (can be larger impact)

Key Differences for Hg vs. NOx Hg Ox Catalyst Potential, K/AV

- Hg Oxidation K_{HgOx}/AV defines:
 - Capacity for X% Hg oxidation
- Activity, K_{HgOx}, depends on:
 - Catalyst composition and age
 - Flue gas conditions (+HCl, HBr, NH₃, CO, SO₂, HC)
- AV = Area Velocity = (Gas Flow) / (Total GSA)
- First order rate equation can be applied for Hg oxidation tests, but be careful! This K value is strongly condition dependent!

$$\frac{K_{HgOx}}{AV} = -\ln[1 - \% HgOx]$$

VGB Workshop "Flue Gas Cleaning 2013" Rotterdam, Netherlands

Presentation Outline

- Background
 - MATS
 - SCR Hg Oxidation Co-Benefit
 - Key Differences Between Hg and NOx Control

Catalyst Management for NOx, Hg, SO₃ Control

- Assess Unit Requirements
- Characterize Installed Catalyst
- Select Optimal Catalyst Action

Summary

Key factors: Hg in Coal (% Removal @ 1.2 lb/TBTU emission)

VGB Workshop "Flue Gas Cleaning 2013" Rotterdam, Netherlands

Key factors: Chlorine in Coal

VGB Workshop "Flue Gas Cleaning 2013" Rotterdam, Netherlands

VGB Workshop "Flue Gas Cleaning 2013" Rotterdam, Netherlands

Presentation Outline

- Background
 - MATS
 - SCR Hg Oxidation Co-Benefit
 - Key Differences Between Hg and NOx Control

Catalyst Management for NOx, Hg, SO₃ Control

- Assess Unit Requirements
- Characterize Installed Catalyst
- Select Optimal Catalyst Action

Summary

Test Reactor Capabilities

Coming Soon: FALL 2013! Cormetech pilot reactor with Hg oxidation test capability (reactor can load up to 4 full length/cross-section layers)

- Collected Hg oxidation data for development, designs, deactivation studies, and quality assurance since 2002.
- Allows characterization of catalyst of any type/vintage.

Layer Dependency Influenced by Temperature and Halogen Level

- Due NH₃ inhibition, Hg oxidation potential depends on layer position.

- The degree of dependency is dependent on temperature and halogen content.

VGB Workshop "Flue Gas Cleaning 2013" Rotterdam, Netherlands

Presentation Outline

- Background
 - MATS
 - SCR Hg Oxidation Co-Benefit
 - Key Differences Between Hg and NOx Control

Catalyst Management for NOx, Hg, SO₃ Control

- Assess Unit Requirements
- Characterize Installed Catalyst
- Select Optimal Catalyst Action

• Summary

Catalyst Design Balance

Historical:

Catalyst is formulated to achieve DeNOx requirements, while meeting SO_2 oxidation constraints.

Moving forward:

Catalyst is formulated to achieve DeNOx and Hg oxidation requirements, while meeting SO_2 oxidation constraints.

Catalyst Improvements

VGB Workshop "Flue Gas Cleaning 2013" Rotterdam, Netherlands

CORMETECH

CORMETECH

CORMETECH

Summary

- Catalyst additions and replacements can be managed to maintain Hg oxidation in a manner analogous to that for DeNOx, but with a few key differences:
 - **Performance threshold** (dependency on downstream equipment)
 - Layer dependency
 - Layer location and NH₃ inlet to each layer must be considered
 - More factors are needed in setting design conditions
 - HCI, HBr, CO
 - More significant impacts of Temperature, O₂, and H₂O
- Understanding these dependencies, factors, requires thorough demonstrated testing capability, catalyst technology and application know-how.

can help you evaluate and meet Hg Emissions Goals

Thank You!

Questions/Discussion

Christopher Bertole

Cormetech, Inc.

VGB Workshop "Flue Gas Cleaning 2013"